
LX 422/722 Intermediate Syntax
Fall 2018 Notes at the end of a semester

1 How these notes relate to the previous notes

This is a followup to some notes that I had intended to hand out before the midterm. Generally, everything

in the midterm summary is still true, won’t be repeated here. This just has a couple of extra sections. In

fact, the midterm summary has a few things that were not really covered until after the midterm, but they

also will not be repeated here.

2 Agreement, inflection, and the auxiliary system

It is probably worth taking a special look at the auxiliary system in English and the way in which subject-

verb agreement and other inflection is assigned.

A [uInfl:] feature is an unvalued, uninterpretable feature that must get a value from something else.

Because we build the trees up from the bottom, we generally introduce something with a [uInfl:] feature

first, and then, later, add something to the tree that will value the [uInfl:] feature. That is, [uInfl:] features

are valued by the next thing up the tree that is capable of assigning inflection.

The things that are capable of assigning inflection are T, M, Perf, Prog, and Pass. T is a somewhat

special case, so we’ll come back to that. For the others, at the point they are Merged into the tree, they can

value (and check) the closest [uInfl:] feature they c-command. For a simple example with a progressive

auxiliary (It is melting), we first have the following structure (where I am now explicitly indicating the

[uInfl:] feature of v as well as the φ -features and case feature of the DP and the selectional feature of the

V melt):

vP

v VP

<V> DP

it

[φ :3sg, ucase:]

V

melt

[uD*]

v

[uV*,

uInfl:]

Assuming that there is a Prog in the numeration (that is, “on the workbench”), the HoP would have us

add that next, resulting in the structure below. Once Prog has been Merged with the vP, Prog (or, more

specifically, its category feature) will c-command the [uInfl:] feature of v and will be able to value the

[uInfl:] (via Agree). Prog itself needs inflection, so it has a [uInfl:] feature of its own, but we have now

taken care of the inflection on v (which ultimately will cause the verb to be pronounced as melting).

1

ProgP

Prog

be

[uInfl:,

Aux]

vP

v VP

<V> DP

it

[φ :3sg, ucase:]

V

melt

[uD*]

v

[uV*,

uInfl:]

Suppose now that we have reached the point where we merge T with the ProgP. T has a [uφ :] feature,

and is capable of assigning inflection. When T is Merged, it must first take care of its own [uφ :] feature.

It will c-command the DP it, which has φ -features, and so the [φ :3sg] feature of it can value and check

the [uφ :] feature of T. At the same time, the [ucase:] feature of the it can be checked by the [ucase:nom]

feature of T. Then, T (now with φ -features valued) can value the [uInfl:] feature of Prog, which it does

with both its tense value and its φ -features. Furthermore, because Prog is an auxiliary (it has an [Aux]

feature, as does Perf, Pass, and M), T values the [uInfl:] “as strong”: [uInfl:pres3sg*].

T′

T

[tense:pres,

uD*, uφ :3sg,

ucase:nom

ProgP

Prog

be

[uInfl:,

Aux]

vP

v VP

<V> DP

it

[φ :3sg, ucase:]

V

melt

[uD*]

v

[uV*,

uInfl:]

The next step will be to move Prog to T (by head-movement) in order to check the [uInfl:pres3sg*]

feature of Prog (which, because it is strong, has to be checked very close to T—i.e. with the Prog head-

adjoined to T). This happens in the same way that V moves to v, and then the derivation continues, moving

it into the specifier of TP, etc.

3 DPs and Case

Every D starts off with a [ucase:] feature—in order to be interpretable, it must have this feature valued

and checked. The function of case in a sentence can be thought of as being an indication of where in the

structure the DP is—based on what values its [ucase:] feature.

Nominative case (I, he, she, they) goes to DPs that wind up in the specifier of a (finite) T. T has a

[ucase:nom] feature that will match, value, and check on the closest DP to T (which would be the Agent,

if there is an Agent).

Genitive case (my, his, her, their, the dog’s) goes to DPs that wind up in the specifier of the silent D

that assigns genitive case (/0GEN). The /0GEN D has a [ucase:gen] feature that will match, value, and check

2

a DP within the complement of /0GEN . Note that, since /0GEN is a D itself, it also has an unvalued [ucase:]

feature that needs to get valued and checked elsewhere. So, in My dog left, the DP my has its case checked

(genitive) by the /0GEN that heads the DP my dog, and the DP my dog has its case checked (nominative) by

the finite T.

Accusative case (me, him, her, them) goes to DPs that generally stay in place. Prepositions and v can

have [ucase:acc] features that can value such DPs. Whether v has a [ucase:acc] feature depends on whether

it assigns a θ -role to a DP in its specifier (“Burzio’s Generalization”); the v in a passive, and the v for an

unaccusative, do not have this [ucase:acc] feature and cannot check accusative case.

Of -case is a special case that goes to DPs that are Themes within an nP. It is the direct analog of

accusative case inside vPs. The n has a [ucase:of]. The of -case is pronounced on a DP by a prefixed of,

but this of is not part of the syntactic representation, it is just how you pronounce a DP with of -case. This

means that in John’s gift of cheese to Mary, of cheese is a DP (not a PP).

There is also one special instance in which accusative case can be assigned by a V, which arises for Vs

that have a possessive have-type meaning. This is specifically required for double object constructions:

John gave me a book. Here, me gets accusative case from v, and a book gets accusative case from V.

Null case is a special case that can only be assigned to PRO (PRO is a DP and so it needs case too,

but it can only get null case—no other case will do). There are two things that can assign null case. One

is a silent C (/0NULL), and one is the “ing” T, which assigns null case in the same way finite T assigns

nominative case. An example of /0NULL would be found in John wants [/0NULL PRO to leave]. An example

of the “ing” T would be [After PRO leaving], John went to the store.

4 Embedded clauses, finite and nonfinite

It is a basic fact of language that sentences can contain other sentences. This can happen in a couple of

different ways, but the most basic situation is to have a sentence embedded under a verb like say or want.

For example, you can have a sentence Pat ate the bagel and embed it within another sentence, John

said [that Pat ate the bagel]. The internal sentence (that Pat ate the bagel) is treated in the same way a

simple object would be (in, e.g., John said his name), as complement to the V say. When used to embed a

sentence, the V assigns a Proposition θ -role to its complement. (In terms of the UTAH, the phrase getting

the Proposition θ -role appears as either a TP or a CP, as a sister to V).

vP

DP v′

v VP

<V> DP ← Theme θ -role

his name

V

say

v

John

3

vP

DP v′

v VP

<V> CP ← Proposition θ -role

C

that

TP

DP T′

T . . .

V

say

v

John

Pat

It is possible for an embedded sentence to be nonfinite as well. The basic case of this is a sentence that

has to in it before the verb, as in I want Pat to eat the bagel. The distinction seems to play an important

role in the behavior of sentences in a couple of different respects. A sentence is finite when it has tense

and/or person agreement expressed on the verb (wrote, writes). We find that the C that only occurs with

finite clauses (whereas for occurs with nonfinite clauses: I said that Pat ate the bagel vs. I want for Pat

to eat the bagel). Finiteness is a property that ultimately “lives in” T—it is properties of T that determine

whether a clause is finite or nonfinite. To reflect this, we can consider nonfinite T to have the feature [inf]

(the idea being that it is short for “infinitive”), while finite T has features like [tense:past] or [tense:pres].

Since only finite T triggers agreement, we can also assume that only finite T has a [uφ :] feature picking

up the φ -features of the subject. Any T, whether finite or nonfinite, is assumed to have the [uD*] feature

(the “EPP feature”) that triggers the movement of a DP into “subject position” (the specifier of TP).

When a T is finite, it can trigger movement of a certain class of heads, although the specifics can vary

across languages. In English, there is a class of heads we can label “auxiliaries” (including Pass be, Prog

be, Perf have, and modals should, could, can, might, etc.) that will move to T, although verbs (v) will not

move to T. We can distinguish the auxiliaries from the non-auxiliaries by supposing that auxiliaries have

a feature that marks them as auxiliaries (the feature [Aux]) and we can say (or, rather, stipulate) that when

the [uInfl:] feature of an [Aux]-featured head is valued by finite T, it is “valued as strong”—meaning that

although T can set the value of the auxiliary’s [uInfl:] feature, it cannot actually check the feature unless

the head is right next to T. So, the auxiliary moves to T.

When a T is nonfinite, however, this movement does not happen. We assume that T still values the

next [uInfl:] feature down, but it will value it as Inf, and this will be sufficient to check the [uInfl:] feature.

(The fact that nonfinite T also differs from finite T in not having a [uφ :] feature could perhaps lead us to

make a connection between subject agreement and the need to move a lower auxiliary—but we have not

made that explicit anywhere.) The main point to remember here: The word to (which we treat as a modal,

in the same category as might, could, should) does not move to T.

To the extent that languages show verb movement to T, it appears to be basically a universal property

of languages that movement occurs to T only when T is finite.

Another difference between finite T and nonfinite T is this: Finite T has a [ucase:nom] (a.k.a. “[nom]”)

feature, meaning that it checks and values the [ucase:] feature (found on every D) as nominative. Nonfinite

T in general does not have such a feature and does not check case at all. Thus, even when a DP moves

into the specifier of a nonfinite TP (to check the EPP feature), the case needs of said DP have not been

resolved. In such cases, the DP might get case from elsewhere (for example, the C for, or a higher ECM

4

verb, discussed below), or it might move on to another SpecTP (as with a raising verb, also discussed

below) to get its case feature checked. One exception to the generalization that nonfinite T leaves case

features unchecked is the ing T found in clauses like before watching TV, which has a [ucase:null] feature,

allowing the PRO subject (before PRO watching TV).

When T is finite, it is always contained within a CP. Sometimes the C itself is not pronounced, but in

those cases it generally could be: John said (that) Mary stole his bagel.

When T is nonfinite, the question of whether there is a CP just above it is not as straightforward. In

general, there is a CP if there needs to be for some other reason, but not otherwise. Examples of where

a C would be needed in a nonfinite clause are: 1) when you can actually see/hear it (Pat wants for Tracy

to leave or while eating a bagel), or 2) when the subject of the nonfinite TP is PRO (Pat wants PRO to

leave). Particularly in cases where the subject of the nonfinite TP gets accusative case from a higher v

(ECM constructions such as John wants me to mow the lawn), there is no CP above TP.

vP

DP v′

v VP

<V> TP ← Proposition θ -role

DP

me

T′

T

[inf]

MP

M

to

. . .

V

want

v

John

There are a couple of different situations in which you would have an embedded infinitive, and these

generally depend on the properties of the verb that embeds it (that is, the verb that provides the Proposition

θ -role).

An ECM verb (“exceptional case marking”) is generally a verb that can also take DP objects to which

accusative case is assigned, but can also take propositional complements. For example, want or find or

believe. This was illustrated above. Consider can take an accusative DP complement (John considered

them) or a full clause (John considered them to be annoying). Notice one important fact about me in John

wants me to mow the lawn: me is not an argument of the verb want, but rather of the verb mow. What

John wants when he wants me to mow the lawn is nothing specifically about me except insofar as I am

doing the mowing that makes the embedded sentence true. That is, want is a relation between the wanter

(Experiencer) and the wanted effect (Proposition), and that’s all (even if initial intuitions might tend to

suggest otherwise). (Compare John wants nobody to ruin the lawn—this is not something about nobody,

it’s about not having the lawn ruined.)

A raising verb is a verb that has only a single θ -role, a Proposition (or, sometimes also a Theme/Experiencer

of a kind, but crucially nothing that originates in the specifier of vP). These are verbs like seem or appear

(or adjectives like likely). The fact that a raising verb itself will be within a higher TP means that something

will need to occupy the specifier of TP (due to the EPP feature of T). Sometimes (when the embedded

clause is finite) this role is played by the expletive it, as in It seems that John has mowed the lawn. But if

there is no it, and the embedded clause is nonfinite, then the DP that occupies the specifier of the higher

5

TP has to be recruited from the lower TP. So, in John seems to have mowed the lawn, John has actually

started in the specifier of the vP associated with mow in the lower clause, moved into the specifier of the

lower TP, and then moved again into the specifier of the higher TP.

TP

DP

they

T′

T vP

v VP

<V> TP ← Proposition θ -role

<DP> T′

T

[inf]

MP

M

to

vP

<DP> v′

v VP

<V> DP

him

V

seem

v

V

trust

v

A control verb is a verb that takes an embedded nonfinite complement, where the “understood” subject

of the embedded clause appears to get a θ -role from the higher verb as well. An example where this arises

is with the verb persuade, as in They persuaded me to leave. Here, the meaning of the sentence seems

such that the Agent of leave is me. However, considering the higher verb persuade, it seems as if it too

is providing a θ -role to me (the one persuaded, which we treat as a Theme of persuade). By hypothesis

(the Unique θ -Generalization), this cannot happen—if there are two θ -roles, there must be two things

receiving those θ -roles. The solution to this conundrum is to suppose that there are two DPs, but a) one

of them is invisible (called “PRO”), and b) the two DPs share the same referent. So, more technically, a

control verb is a verb that takes a nonfinite complement that has PRO as its subject.

The distinction can perhaps be most easily seen with the verb want, which has the interesting property

that it can function either as a control verb or as an ECM verb. When want functions as an ECM verb, we

find the subject of an embedded nonfinite clause surfacing in the accusative case: John wants me to leave.

When want functions as a control verb, no embedded subject is visible—yet, the θ -roles are presumably

unchanged from the ECM example: John wants to leave. We therefore understand this to be, in fact, John

wants PRO to leave.

Among control verbs, there are two basic types. Most control verbs are object control verbs, so called

because the object of the higher verb is necessarily coreferential with the lower PRO. (The word “control”

in fact comes from the idea that an argument of the higher verb “controls” the reference of the PRO.)

Persuade is of this type—the object (Theme) of persuade is understood to be the lower Agent (it controls

6

the reference of PRO): In John persuaded me PRO to leave, the object (me) the Agent of leave (PRO)

necessarily have the same referent.

A small number of control verbs are subject control verbs, and this is something that essentially seems

to be just an idiosyncratic property of individual verbs (although the inventory of subject and object control

verbs across languages is pretty stable, so it is presumably somehow derived from the semantics—but how

is not clear). The basic example of a subject control verb is promise: If John promised me to leave (that is,

John promised me PRO to leave), it is John that doing the leaving (because John is the subject and, with

subject control verbs, the referent of the subject is the same as the referent of the embedded PRO.)

The structure for They persuaded me to leave is given below, but it could as easily serve as the structure

for They promised me to leave, since the difference between the two control verbs is not one that is reflected

structurally in the tree. Notice that here, the embedded clause (getting the Proposition θ -role) is a CP: We

need the special C /0NULL in order that case can be checked on PRO (recall that PRO requires a special

“null” case).

TP

DP

they

T′

T vP

<DP> v′

v VP

DP

me

V′

<V> CP

C

/0NULL

TP

DP

PRO

T′

T

[inf]

MP

M

to

vP

<DP> v′

v <VP>

V

persuade

v

V

leave

v

7

5 Wh-movement and V2. . .

Many languages seem to require changes in the otherwise normal word orders when information-seeking

questions (such as Who left?) are formed. This happens in English: In an information-seeking question,

the question word seems to need to be first in the clause with which it is associated. A further curious

thing happens as well, the subject and “auxiliary” (be, have, do, or modal elements like can, should, will,

etc.) switch places. If there was no auxiliary in the corresponding statement, often an extra do is thrown

in as well.

The terminology used to describe this in our syntactic system arises historically from the study of

this phenomenon in English. Question words (often in whatever language) are referred to as wh-words

(because in English, most such words start with wh). The effect of relocating such words to the front of

their sentence is called wh-movement (movement of wh-words), and the inversion of the subject and the

auxiliary is often called “subject-auxiliary inversion” (or even just “SAI”).

In terms of the system we have developed, there is a quite sensible way to understand what is happening

here. The feature that distinguishes questions from statements is a clause type feature that is one of the

features of C. If we suppose that interrogative C in some languages (say, English) has a [uwh*] feature

that operates rather like the EPP feature of T, causing something with a [wh] feature to move up into its

specifier, we can account for the movement of wh-words to the front of the sentence. At the same time, we

can suppose that an operation analogous to what causes auxiliaries and/or verbs to move to T (auxiliaries

in English, both auxiliaries and verbs in French, etc.) causes T to move to C in main clause interrogatives.

Specifically, we can say that T has a feature that is valued by C (a [uclause-type:] feature), and when that

feature is valued as Q, it is valued as strong (meaning that the feature can only be checked if T moves up

to C).

So, wh-movement in English involves movement of a phrase with a [wh] feature in its head into the

specifier of CP and, in main clause questions, the movement of T to C. (Note that in embedded clauses,

this T to C movement does not occur. We simply have to stipulate that only when a main clause C values

the [uclause-type:] feature of T as [Q] is it valued as strong.)

CP

DP

what

[wh]

C′

C TP

DP

they

T′

<T> vP

<DP> v′

v VP

<V> <DP>V

ignore

v

T

[uclause-type:Q*]

C

[Q,

uwh*]

Subject wh-questions are special in that T does not move to C, even in main clauses. We account for

this by supposing that a wh-word itself can value the [uclause-type:] feature of T (thereby keeping C from

8

valuing it at all, as strong or otherwise), something that only a subject wh-word is in a position to do.

(Note: that last statement presupposes that only when [wh] c-commands the [uclause-type:] feature of T

can [wh] value the [uclause- type:] feature.)

CP

DP

who

[wh]

C′

C

[Q,

uwh*]

TP

<DP> T′

T

[uclause-type:wh]

vP

<DP> v′

v VP

<V> DP

me

V

kick

v

Related somewhat to this discussion of wh-movement in English, there a number of languages (Ger-

man, Dutch, for example) that seem to do a very similar thing not just in questions but in all sentences.

These are “V2” languages, so called because the (finite) verb appears in “second position” after a topic.

We can analyze this as follows: Even declarative C in such languages values the [uclause-type:] feature of

T as strong, and has a [utop*] feature, forcing some phrase (which is marked with a [top] feature) into the

specifier of CP.

6 Phases and islands

Movement in this system occurs generally because it has to, in order to check a (strong) feature. It’s been

observed that, that when something that would have to move is found inside a certain type of constituent,

the movement becomes impossible. These constituents that can “trap” a moving element are known as

“islands.”

The main examples of islands are: Complex Noun Phrase islands, Adjunct islands, and Wh-islands.

Wh-movement is the primary means of detecting these islands—if a wh-phrase gets its θ -role inside an

island and it has to move to a SpecCP that’s outside the island, then the derivation fails and the sentence is

ungrammatical.

A complex noun phrase island is any definite DP, like the book about fish. You can’t ask What did

John read the book about? and the reason is that what would need to move from inside the definite DP

out to the SpecCP.

An adjunct island is any adjunct, most obviously clausal adjuncts like after the President told Congress

about the economy. So, you can’t ask Who did you laugh after the President told about the economy?.

A wh-island is basically any embedded question, like who John gave the flowers to. So, you can’t ask

What did Mark know who John gave to?.

9

The underlying reason for islands existing is taken to be that “movement can’t go too far”—and the

reason it can’t go too far is that the structure is built up in chunks, and once a chunk is finished, you can’t

see inside it to move something out of it.

The chunks are phases, which are CPs. The idea is that once a CP is finished, it is interpreted in some

way—basically rendered opaque, except for its “edge” (the specifier of CP).

Because SpecCP is not “frozen” along with the rest of the phase, a wh-word that moves into SpecCP

can avoid being “frozen” and can remain visible for movement into a higher SpecCP if needed. Observa-

tionally, we can see that wh-phrases seem to be able to cover arbitrarily large distances (What did John

say Mary heard that Bill bought?) but there is also evidence that longer movements occur as a result of a

number of smaller steps (into each SpecCP along the way). The visibility of SpecCP from outside is also

affected by whether the CP itself gets a θ -role (Proposition). If the CP does not get a θ -role, then not even

the edge (SpecCP) is visible, and nothing can move out at all. The fact that adjuncts don’t get θ -roles then

predicts correctly that adjuncts are islands and wh-movement should not be possible from within them.

The wh-island effect also arises from phases: In an embedded question, SpecCP is already occupied,

either by a different wh-phrase, or by Op (the silent wh-word). This means that a wh-word that needs to

get higher in the tree can’t stop in the embedded SpecCP (it is already full), and so it gets caught inside the

embedded CP when the phase finishes and the contents of CP are “frozen.”

The complex noun phrase island effect suggests that DPs are phases too, or perhaps only definite DPs

are phases. Since they have no SpecCP to move to, wh-words are trapped within them when the phase

finishes. For legitimate cases of “long distance” wh-movement, it is assumed that C can (optionally) have

a [uwh*] feature that will draw the wh-phrase up to the intermediate SpecCP position (in order to keep it

accessible from above once the phase finishes).

10

