
CAS LX 422 ∼ GRS LX 722 Intermediate Syntax

Lecture 5
Agree

1 Auxiliaries and Tense

Auxiliaries and modals and verbs

How do we determine which form each verb takes?

(1) I ate

(2) I could eat

(3) I had eaten

(4) I was eating

(5) I had been eating

(6) I could have eaten

(7) I could be eating

(8) I could have been eating

• HAVE (perfective aspect): I have eaten. I had eaten.

• BE (progressive aspect): I am eating. I was eating.

• COULD (modal): I can eat. I could eat. I shall eat. I should eat. I may eat. I might eat. I will

eat. I would eat. I must eat.

Auxiliaries and modals and verbs

There seems to be an order: Modal, Perf, Prog, verb.

(9) I could have been eating M Perf Prog V

(10) * I could be having eaten M Prog Perf V

(11) * I was canning have eaten Prog M Perf V

(12) * I had cannen be eating Perf M Prog V

(13) * I was having cannen eat Prog Perf M V

(14) * I had been canning eat Perf Prog M V

Capture with an extended Hierarchy of Projections. Categories M, Perf, Prog. Each optional,

all carrying the [aux] feature.

Hierarchy of Projections

(M) > (Perf) > (Prog) > v > V

Negation

(15) I did not eat not V

(16) I could not eat M not V

(17) I had not eaten Perf not V

(18) I was not eating Prog not V

1



(19) I had not been eating Perf not Prog V

(20) I could not have been eating M not Perf Prog V

Suppose not is of category Neg. How can we describe where not occurs? How can we fit it

into our Hierarchy of Projections? Suppose that we can. Where?

Tense

Idea: the first auxiliary (whatever it is) appears before Not. Neg cannot fit within the auxil-

iaries. But maybe it’s above all the auxiliaries, and then something else is above it. Like where do

goes, only appearing in negative sentences.

(21) They did not eat. They ate.

(22) They do not eat. They eat.

All do seems to reflect there is tense, so let’s suppose that this position above Neg is T. Further,

let us suppose that T (and only T) has the interpreted feature [past] or [nonpast] (or [±past] etc.).

Tense is interpretable on T, though it is also reflected on the first verb or auxiliary.

Moving the auxiliary

Hierarchy of Projections

T > (Neg) > (M) > (Perf) > (Prog) > v > V

Just as V moves to v, we will suppose that the (highest) auxiliary (including Perf, Prog, M)

moves to T.

If Neg is there you can see it happen. But we assume it happens anyway even if you cannot see

it.

(23) They T+shall not <shall> be giving a book to Pat.

(24) They T+shall <shall> be giving a book to Pat.

If there is no auxiliary, the verb does not move (in English) to T; not somehow blocks tense

association with the verb, requiring do to be inserted in the position of T.

They might eat it

they [D, . . . ] v [v, uD, . . . ]

eat [V, uD, . . . ] it [D, . . . ]

might [M, . . . ] T [T, past]

Pick up eat and it and Merge. Checks the uD

feature of eat. The resulting object is now in the

workspace, having inherited the features from its

head.

they [D, . . . ] v [v, uD, . . . ]

VP [V, uD, . . . ]

might [M, . . . ] T [T, past]

VP

V
eat

[V, uD, . . . ]

DP
it

[D, . . . ]

2



They might eat it

they [D, . . . ] v [v, uD, . . . ]

VP [V, uD, . . . ]

might [M, . . . ] T [T, past]

The Hierarchy of Projections says that once VP is

complete, v is the next thing that needs to Merge.

This counts as motivation. Labeled as v′ because

it still has a [uD] and so will not be the maximal

projection.

they [D, . . . ]

v′ [v, uD, . . . ]

might [M, . . . ] T [T, past]

v′

v
[v, uD, . . . ]

[V, uD, . . . ] VP

V
eat

DP
it

They might eat it

Although we have not formalized exactly how

this is implemented, something about v forces the

V to move up to it.

This is presumed to happen as soon as v and V

“can see” each other, once they have been put

within the same syntactic object.

v′ [v, uD, . . . ]

v+V
eat

VP

<eat> DP
it

They might eat it

they [D, . . . ]

v′ [v, uD, . . . ]

might [M, . . . ] T [T, past]

To check the [uD] feature of v′, we Merge they.

vP [v, uD, . . . ]

might [M, . . . ] T [T, past]

vP [v, uD, . . . ]

DP
they

v′

v+V
eat

VP

<eat> DP
it

They might eat it

3



vP [v, uD, . . . ]

might [M, . . . ]

T [T, past]

The Hierarchy of Projections says that

when we reach the end of vP, we Merge

the next thing we have, which is MP.

MP [M, . . . ]

T [T, past]

MP

M
might

vP

DP
they

v′

v+V
eat

VP

<eat> DP
it

They might eat it

MP [M, . . . ]

T [T, past]

The Hierarchy of Projections says that

when we are done with MP, we Merge

T.

TP [T, past]

TP

T
[past]

MP

M
might

vP

DP
they

v′

v+V
eat

VP

<eat> DP
it

They might eat it

Then M moves up to T.

Why? Empirically, it seems that auxiliaries

move to T, the modal seems like an auxiliary.

Though the evidence is a bit sparse, it’s more

a conceptual hypothesis.

How? Well, we haven’t worked out move-

ment properly yet, so we don’t have a way to

say what happens or why. For the moment it

is just a “rule from outside”: the top auxil-

iary moves up to the position of T.

TP

T+M
might

MP

<might> vP

DP
they

v′

v+V
eat

VP

<eat> DP
it

They might eat it

4



But now it is the wrong order,

the subject should be before might.

So, another movement based on a

rule from outside: The T needs to

have a DP in its specifier.

But there is nothing left in the

workspace. So, we move the clos-

est DP (they) up to satisfy this re-

quirement.

TP

DP
they

T′

T+M
might

MP

<might> vP

<they> v′

v+V
eat

VP

<eat> DP
it

They ate it

The T node:

• Provides a position above negation for auxiliaries

• Has a realization that seems to be tense-related

We hypothesize that this is the place where tense information “lives.” This is the position in

the tree where the lexical item that represents past or nonpast is placed.

Stated this way, it would seem to apply to any tensed sentence. The semantics of “past” are

located here. Which then brings up the question of sentences like They ate it. Here, it seems

that there is no independently realized tense, just a form of the verb. So where is T, given the

assumption that it is where the tense features are introduced/interpreted?

2 Agree and Movement

A formal agreement

We will formalize the idea that tense features are semantically features of T, but are realized on

the verb.

Informally, T has information that can determine the “ending” of the verb, and the verb “needs

an ending.” Needing something is modeled as an uninterpretable feature, something that cannot be

allowed to survive to the point of interpretation at the interfaces.

We will ignore subject-verb agreement for the moment, and just focus on tense inflection.

Subject-verb agreement will be similar but involves some other stuff we will talk about later.

Idea: Verbs that need inflection have a [uInfl: __ ] feature, a blank that needs to be filled in

and can be filled in by tense features.

5



Needing an ending

For this idea to work, we need to suppose that this “I need [sufficient information to de-

termine my] inflection” feature on the verb is somewhat selective about what constitutes suffi-

cient/appropriate information.

It could get information about the tense (from T), that would be appropriate and sufficient. But

verbs also can have -ing or -en endings, and those forms do not reflect tense, but rather some kind

of aspect. So information like “perfective” or “progressive” is also appropriate and sufficient.

This is what “uInfl” is kind of standing in for. It says: “I need some inflectionally relevant

features” and we (from outside) hypothesize that those include tense features like [past] as well as

category features like T, Perf, Prog. And later we will include subject agreement features (person,

number, gender) as well.

Feature classes

Specifically, this seems to need some kind of division of features into classes.

There are category features. N, V, T, C, Perf, Prog, etc. Maybe these can be modeled in terms

of an array of binary values ([±N, ±V, etc.]).

There are the features we’ll use in subject agreement: person, number, gender. These tend to

pattern together. So even if there isn’t a “person” class of features, there is a “φ -feature” class of

features that includes person, number, and gender features.

For tense, we suppose [past] is a tense feature. But what about nonpast? If features are binary,

[±past] are both tense features. If not, we need to be able to indicate “tensed” separately from

“past” (such that nonpast is tensed but not past).

Unvalued (uninterpretable) features

The kind of uninterpretable feature we are positing is slightly different from what we had

before. So far, we’ve had a [uD] feature on V in order to force a Merge with an object. Such a

Merge “checks” the feature by ensuring an exact match, V needs a D, and D is one.

The [uInfl: ] feature is a step more abstract, it says “I need something in this feature class.”

And, moreover, the thing it needs is somehow recorded on the verb after that. The verb needs

these features, and then once it has them, those features are used in the determination of how it is

pronounced.

Quite analogous to filling in a blank. In fact, the u designation might be redundant with the

fact that the value is missing, if a missing value cannot be interpreted.

Had eaten

6



Goal: the perfective auxiliary have

must get an ending and gets it from T.

The verb must get an ending and gets it

from Perf (resulting in -en).

This also models how the auxiliaries

and tense each have the effect of in-

flecting the next verbal form down.

There are set of things that need in-

flection (M, Perf, Prog, v) and a set

of things that provide inflection (T, M,

Perf, Prog).

TP

T
[past]

PerfP

Perf
have

[uInfl: past]

vP

. . . v′

v+V
eat

[uInfl:Perf]

. . .

Agree

Agree (take 1)

In the configuration X[F:value] . . . Y[uF: ], F checks and values uF, resulting in X[F:value] . . .

Y[uF: ]

So we have two kinds of uninterpretable features so far, [uInfl:] type that need a value from a

matching feature type in order to be checked, and [uD] type that need to be Merged with something

containing a matching feature. These seem like they have slightly different priorities, insofar as the

[uD] type seems to need to go first.

We also still need to clarify what conditions hold of “. . . ” there as well. Is it /0 (requiring

sisters like [uD] does)? Or can there be more there inbetween so long as they’re in the same

syntactic object?

Inflecting the verb

We start off Merging eat with it, in order to check

the [uD] feature of V. With no more uninter-

pretable features to check, we are done with VP.

The Hierarchy of Projections dictates that Merg-

ing v is next. The need for an ending is encoded

on v as a [uInfl: ] feature. The need for a DP (will

get the Agent θ -role) is encoded by the [uD].

v′

v
[uInfl:,

uD]

VP

V
eat

[uD]

DP
it

Inflecting the verb

The first thing that happens when we merge v and

VP is that V moves up to v. This is presumed to

happen always at the first opportunity, at the first

point they are both in the same syntactic object.

Then, the next most important thing to do is

check the [uD] feature by Merging they. This is

sufficient to consider the vP now “finished.” (We

could adjoin something at this point.)

vP

DP
they

v′

v+V
eat

[uInfl:,
uD]

VP

<eat> DP
it

7



Inflecting the verb

If the next thing we have available (in the

order dictated by the HoP) is T, we Merge it.

Once T is in the structure, it is able to value

and check the [uInfl:] feature on v.

The verb, on the basis of having the

[uInfl:past] feature, is pronounced as “ate.”

TP

T
[past]

vP

DP
they

v′

v+V
eat

[uInfl:past,
uD]

VP

<eat> DP
it

Inflecting the verb

If, on the other hand, the next thing we

have available (in the order dictated by

the HoP) is Perf, we Merge it (before

we get to T).

Once Perf is in the structure, it is able

to value and check the [uInfl:] feature

on v.

The verb, on the basis of having the

[uInfl:Perf] feature, is pronounced as

“eaten.”

PerfP

Perf
have

[uInfl:]

vP

DP
they

v′

v+V
eat

[uInfl:Perf,
uD]

VP

<eat> DP
it

Inflecting the verb

We then proceed to T, Merging

that next since that’s the order the

HoP dictates.

When T is Merged, it can value the

[uInfl:] feature of Perf, resulting

in [uInfl:past]. Thus Perf is pro-

nounced as “had.”

TP

T
[past]

PerfP

Perf
have

[uInfl:past]

vP

DP
they

v′

v+V
eat

[uInfl:Perf,
uD]

VP

<eat> DP
it

Movement

We’ve seen a few cases where things are moving around, and we’ve left them as mostly mystery

magic.

Let’s now formalize movement a bit more and explore what it does and why it happens in the

context of the model being developed.

8



First assumption: The system is lazy, it will only do what it must. So, there must be a problem

that movement solves which could not be solved without the movement. Movement must be forced

by something.

The main kind of “problem” we have formalized so far is uninterpretability. Moving things

must check a feature, defusing the threat of an uninterpretable feature.

Movement types

We’ve seen two types of movement so far.

XP-movement. Movement of the subject from the position where it gets a θ -role (e.g., Agent

in SpecvP) to the “subject position,” SpecTP.

Head-movement. Movement of a head to the position of another head. For example, movement

of V to v, or movement of Perf to T.

The effect of movement would seem to be to change how close together things are. That is, we

can think of the problem movement is solving as being one where the thing that moves was “too

far away” until it moved.

Strong features vs. weak features

Suppose there are two types of uninterpretable feature, distinguished by whether they can be

checked by something far away or by something that has to be close. We’ll call the ones that require

closeness “strong”—the intuitive idea is that they are kind of urgent, and also powerful enough to

force something to move.

The “sentences need a subject” requirement, translated into “T needs a D in its specifier,” can

be implemented by saying that T has a strong (uninterpretable) feature that can only be checked by

a D that is close by. We write such a feature like [uD*], meaning that it is a “strong uninterpretable

D feature.”

When we reach T in the tree, there are generally no more DPs around to Merge, so this feature

gets checked by locating a DP we already have in the tree and moving it to the specifier of TP (that

is, close).

Searching

Operationally, we Merge T with its [uD*] feature into the tree, and then look into the thing T

Merged with to find a DP to move. The search goes deeper until it finds one and then the system

moves that one. The system is lazy, so if it finds one, it does not keep looking, it just moves the

first one it finds.

So T has a feature [uD*] which is strong. The Agent DP inside the vP has a [D] feature, which

matches the strong feature (so could in principle check it). But because [uD*] is strong, it cannot

be checked with the DP so far away. So we move the DP up to Merge with the object T heads,

placing it in the specifier of the TP. Now the [uD*] feature and the D feature are sisters, so they’re

close enough, and the problem is solved.

9



Agree

Agree

If:

• X has feature [F1], Y has feature [F2]

• X c-commands Y or Y c-commands X

• [F1] and/or [F2] are/is uninterpretable.

• [F1] matches [F2]

• X and Y are close enough, meaning:

– There is no closer matching feature between X and Y

– If [F1] or [F2] is strong, X and Y share the same mother node

Then:

• Any unvalued feature ([F1] or [F2]) is valued.

• The uninterpretable feature(s) is/are checked.

Agreement as motivation

Agree thus constitutes a motivation for movement. It’s not the operation that moves things (nor

is it the operation that Merges things), but it is the reason those operations are undertaken. Agree

is the way we defuse uninterpretable features.

Also: With this distinction between strong and weak uninterpretable features, where strong

ones require sisterhood, we should recast the features that introduce arguments into θ -roles as

strong as well. So, V has a [uD*] feature now. Forcing Merge of the Theme.

Matching and checking

Matching

• Identical features match. [D] matches [uD].

• Some features match several things. [uInfl:] can match values of the tense features ([past]) as

well as category features ([Perf], [Prog]).

• If thre are two options, only the closest ones participate in Agree.

Checking

• An unvalued feature is always uninterpretable.

• Valuing a feature will check it.

• A privative feature is simply checked when it matches.

10



Other properties of Agree

Strong features Agree first

• Where a single head has more than one feature that must Agree, the strong ones are satisfied

first

The system is lazy

• Agree always goes with the closes option it can find in order to check an uninterpretable

feature.

• If Agree locates a matching feature on X for one uninterpretable feature, and X has a different

feature that also matches, both features will be checked.

• Examples are coming up later, but for cross-referenceing: these properties are important for

subject agreement.

Head movement

When V moves to v, we will assume that V head-

adjoins to v. The v head is basically replaced by

a v head that has a V hanging off of it.

Adjunction does not change projection levels. v

is still a minimal projection, and still the head of

vP. But it is a complex head—it is a head with

another head adjoined to it.

v′

v VP

<V> DPV
eat

v
[. . . ]

Head movement

We can implement this by saying that v has a

[uV*] feature, forcing the V to be close.

But wasn’t it already close? Here, in order for this

to make any sense, we need to say that you can’t

check a feature when you Merge for the HoP. We

Merged v with VP for the HoP, so it neutralizes

that relation for feature-checking. The V needs to

get close to the v in some other way, and soon.

v′

v VP

<V> DPV
eat

v
[uV*, . . . ]

Copies and traces

In line with the “minimal machinery” aspiration,

we will try to implement movement by using

what we already have, Merge.

Movement will be selection of something inside a

syntactic object and then Merging it or Adjoining

it again. No “delete” step, just Merge it again (or,

maybe, make a copy and Merge a copy).

v′

v VP

<V> DPV
eat

v
[uV*, . . . ]

11



Though this potentially increases need for pronunciation machinery, since you have several

copies (maybe), and need to decide which to pronounce. Under most (all?) circumstances it is the

highest copy, the one that c-commands the others.

Only auxiliaries move to T

(25) I do not eat green eggs and ham

(26) I was not eating green eggs and ham

(27) I have not been eating green eggs and ham

(28) I would not have been eating green eggs and ham

• There is a set of things that move to T: the auxiliaries (have, be, modals). Main verbs do not

move to T. And only the topmost auxiliary moves to T.

• Since auxiliaries and main verbs behave differently, they must be differentiated. Suppose

auxiliaries have the feature [aux] (i.e. the property of being auxiliaries).

• Movement is driven by strong features.

• So, [uAux*] on T? No, that does not work.

• [uT*] on Aux? No, that would not be promising either.

Moving an auxiliary to T

Moving to T in English, observationally

A head with the feature [aux], and whose [uInfl:] feature is valued by T, moves to adjoin to T.

Movement is driven by strong features. None of these features can be strong in the general case.

So, it appears that we need to stipulate a situation in which a feature becomes strong based on its

context/situation. Here is specifically what we will say:

Moving to T in English

A head with the feature [aux], and whose [uInfl:] feature is valued by T is valued as strong

(therefore not checked unless it is close). Will need to move to be close in order for the feature to

be checked.

Where we are

Merge

Take two syntactic objects and form a single syntactic object out of them. The features of the

resulting object are those of the one that projected.

Agree

Where either/both [F1] and [F2] are uninterpretable, they can see each other, and match (wihtout a

closer match), the uninterpretable feature(s) is/are valued. If no features are strong, the now-valued

uninterpretable features are checked. Otherwise, features are checked only if the matching features

are close together.

12



Move

Select some Y within a syntactic object X and Merge Y again to X, or (if Y is a head) adjoin it to

the head of X.

13


	Auxiliaries and Tense
	Agree and Movement

