
CP & PRO
(8.1-8.2.5)

13

CAS LX 422 /
GRS LX 722

Intermediate Syntax

Types of sentences
• Sentences come in several types. We’ve mainly seen

declarative clauses.

1) Horton heard a Who.

• But there are also questions (interrogative clauses)…

2) Did Horton hear a Who?
3) Who did Horton hear?

• …exclamatives…

4) What a crazy elephant!

• …imperatives…

5) Pass me the salt.

Declaratives & interrogatives

• Our syntactic theory should allow us to distinguish
between clause types.

• The basic content of Phil will bake a cake and Will Phil
bake a cake? is the same.

• Two DPs (Phil, nominative, and a cake, accusative), a
modal (will), a transitive verb (bake) that assigns an
Agent θ-role and a Theme θ-role. They are minimally
different: one’s an interrogative, and one’s a
declarative. One asserts that something is true, one
requests a response about whether it is true.

Clause type

• Given this motivation, we seem to need one
more category of lexical items, the clause
type category.

• We’ll call this category C, which traditionally
stands for complementizer.

• The hypothesis is that a declarative sentence has
a declarative C in its structure, while an
interrogative sentence (a question) has an
interrogative C.

Embedding clauses

• The reason for calling this element a
complementizer stems from viewing the
problem from a different starting point.

• It is possible to embed a sentence within another
sentence:

1) I heard [Lenny retired].

• And when you embed a declarative, you generally
have the option of using the word that.

2) I heard that [Lenny retired].

• So what is that that?

What’s that ?

• We can show that that “belongs” to the embedded
sentence with constituency tests.

1) What I heard is that Lenny retired.

2) *What I heard that is Lenny retired.

• There’s a demonstrative that, but that’s not what that is.

3) *I heard this Lenny retired.

• So, that is its own kind of thing. It’s an introducer of
embedded clauses, a complementizer.

Complementizers
• There are a couple of different kinds of

complementizer. That is for embedding declarative
sentences.

1) I understand that Alton dislikes unitaskers.

• It’s also possible to embed an interrogative sentence,
like so:

2) I wonder if Alton dislikes unitaskers.

3) I wonder whether Alton dislikes unitaskers.

• Here, if and whether serve as complementizers,
introducing the embedded interrogative.

• I wonder about the answer to Does Alton dislike unitaskers?

Selection
• Just like the verb dislikes takes the DP unitaskers as its

object, some verbs take clauses as their object.

• Some verbs specify what kind of clause they take:

1) I claimed that Alton dislikes unitaskers.
2) *I claimed if Alton dislikes unitaskers.
3) *I wondered that Alton dislikes unitaskers.
4) I wondered if Alton dislikes unitaskers.

• This is a matter of selection. Some verbs select for
declaratives, some verbs select for interrogatives.
Some verbs can take either, some neither.

5) I know that Alton dislikes unitaskers.
6) I know if Alton dislikes unitaskers.
7) *I washed that Alton dislikes unitaskers.
8) *I washed if Alton dislikes unitaskers.

C

• So, we have lexical items like that and if, which are
complementizers (category: C), and have a value
for clause type.

that [C, clause-type:decl, …]

if [C, clause-type:Q, …]

• Where is it structurally? We know it forms a
constituent with the clause it introduces. We
know that verbs can select for different kinds of
C. The natural conclusion is that it is a sister to TP,
at the top of the tree, which projects.

CP

• C is the head of CP.

• Saying this also provides a natural
explanation of why in SOV languages,
complementizers are generally on the
right.

1) Hanako-ga [Taroo-ga naita to] itta.  
H.- nom T. -nom cried that said  
‘Hanako said that Taro cried.’

that or not that
• C specifies the clause type; that indicates a declarative

clause. Why then are both of these good?

1) Jack claimed that Jill fell.
2) Jack claimed Jill fell.

• In French, Spanish, probably most other languages
you don’t have the option to leave out the C.

3) J’ai dit qu’ elle était malade  
I’ve said that she was ill  
‘I said that she was ill’

4) *J’ai dit elle était malade

• Claim doesn’t embed interrogatives.

5) *Jack claimed if Jill fell.

• So Jill fell is declarative in Jack claimed Jill fell.

Ø

• Where does that leave us?

1) Jack claimed Jill fell

• Claim only takes declarative complements.

• Jill fell is declarative.

• Clause type is a feature of C.

• Thus: There is a declarative C.  
You just can’t hear it.

• English has two declarative
complementizers. One is that, one is Ø. In
most cases, either one works equally well.

Jill fell is a declarative
• But hold on a minute. Jill fell, just as its own

sentence (not embedded) is also declarative.

• Cf. Did Jill fall?

• So, we’ll suppose that since the function of C is
to mark clause type, there’s a C in simple
sentences as well.

• The C that heads the whole structure has
somewhat special properties. Declarative C in
that position is never pronounced. Interrogative
C is not pronounced as a word, but makes its
presence known by causing movement.

SAI in YNQs

• In yes-no questions, the subject and auxiliary
“invert” (Subject-Auxiliary Inversion):

1) Scully will perform the autopsy.

2) Will Scully perform the autopsy?

• Assuming everything we’ve got so far:

• T has a [uD*] (EPP) feature to check,  
so Scully is in SpecTP.

• The question is an interrogative.

• (Unpronounced) C is to the left of TP.

• So what must be happening in yes-no questions?

T-to-C

• A natural way to 
look at this:  
T is moving to C.

• Just like V moves to v,  
or like Aux (Perf, Prog, or  
Pass) moves to T, or like N moves to n.

• In (main clause) questions, T moves to C.

T-to-C

• Specifically:

• Suppose T has an 
uninterpretable feature  
that matches a feature 
of C: [uclause-type:].

• Suppose that when C values [uclause-type:] as Q,
the uninterpretable feature is strong.

• Cf. When T values [uInfl:] on Aux (Prog, Perf, Pass),
the feature is strong, and Aux moves to T.

A simple
declarative

clause
YNQ • In a YNQ, the [Q]

feature of C matches
and values the
[uclause-type] feature
of T as strong ([Q*]).

• T moves up to adjoin
to C, checking the
feature.

Abbreviations:  
[Q] = [clause-type:Q]

[Q*] = [uclause-type:Q*]
[uclause-type] = [uclause-type:]

YNQ • If T is just a past or
present tense marker,
v is no longer the
head of T’s sister.So
we pronounce do:  
Did Scully perform
the autopsy?

Embedding questions
• So, you can embed declaratives and you can embed questions

1) I heard (that) Jill fell.
2) I asked if Jill fell.

• Notice that the main clause is different:

• If the topmost C is interrogative, we get SAI. If the topmost C is
declarative, it is pronounced Ø.

• If an embedded C is declarative, it can be pronounced either as Ø
or as that. If an embedded C is interrogative, C is audible (if) and
no SAI.

• So, T moves to C only in main clause interrogatives. [uclause-
type:] is strong only when valued as Q by a main clause C.

Nonfinite clauses

• Some verbs embed finite declaratives, as we have
seen: I heard (that) Jill fell.

• There are other verbs that embed nonfinite
clauses. These come in a few types, but we’ll start
with the try type.

1) Scully tried to perform the autopsy.

• This is two clauses: Scully tried something, and
what it was was to perform the autopsy.

θ-roles

1) Scully performed the autopsy.
2) Scully tried to perform the autopsy.

• The verb perform has an Agent and a Theme,
here Scully and the autopsy, respectively.

• The verb try also has two θ-roles, an Agent (the
one trying) and a Theme (the thing attempted).
Suppose that the Theme of try is [to perform the
autopsy] here.

θ-roles
1) Scully performed the autopsy.
2) Scully tried to perform the autopsy.

• In the second sentence, Scully is both the one trying
and, if you think about it, the one performing the
autopsy. The same individual is the Agent of both.

• Agent θ-roles are assigned to the DP that is Merged
into SpecvP.

• However: You are not allowed to assign two different
θ-roles to the same DP. Otherwise, it should be
possible for Scully admires to mean Scully admires herself.

PRO
1) Scully tried to perform the autopsy.

• So, we have something of a problem here. We need
an Agent DP in the vP for perform, and an Agent DP
in the vP for try. But it appears as if there is only one
DP around, Scully.

• What to do? Once again gritting our teeth, we
resolve ourselves to the fact that we need two
DPs and can only see one— therefore, there must
be a DP we can’t see.

• The DP we can’t see, we call PRO.

Control
1) Scully tried [PRO to perform the autopsy].

• PRO is a DP that is the Agent of perform, Scully is a DP that
is the Agent of try.

• It is impossible to actually pronounce an Agent for perform.

2) *Scully tried [Mulder to perform the autopsy].

• The PRO Agent of perform must be interpreted as being the
same person as the Agent of try.

• PRO is a little bit like an anaphor in this respect; this fact
is similar to the fact that herself in Scully admires herself
must refer to Scully.

• This obligatory co-reference goes by the name control.
Scully controls PRO. Sentences with PRO in them are
often called control clauses.

PRO
• So why is it impossible to say this?

• *Scully tried [Mulder to perform the autopsy].

• The answer we’ll give is that nonfinite T (to)
does not have a case feature.

• Finite T has a [nom] feature which matches, values,
and checks the [case] feature of the subject,
checking itself in the process.

• Nonfinite T has no case feature at all, so Mulder
would be left with its case unchecked.

Null case
• As for PRO, it is a DP so it has a [case] feature. If

Mulder can’t get its case checked by the nonfinite T,
how does PRO get its case checked?

• A standard (and perhaps less than completely
elegant) way to look at this:

• PRO is special, it can only “show up” with “null case”
([ucase:null]).

• Null case is special, it is only allowed on PRO.

• Control clauses are special, they are introduced
by a null C that has a [null] case feature, which can
check the [case] feature on PRO.

Try
• So, try embeds a nonfinite CP, headed by the special null

C with the [null] case feature.

• In turn, the subject must be PRO, in order to
successfully check that feature of C.

• If the [case] feature of any other DP is valued and
checked as [null], the derivation crashes: only PRO
can have null case.

• The embedded clause must be nonfinite (T can’t itself
have a [nom] feature).

• If the [nom] feature of T checks the [case] feature of
the subject, nothing is left to check C’s [null] feature.

Try

Here, the [null] feature of
C will match, value, and
check the [case] feature
of PRO, checking itself in
the process.

