The Syntax and Semantics of Restricted Quantifiers

The Syntax of Restricted Quantifiers: If A and B are formulas, then so is [$\left.\mathrm{Qx} \mathrm{x}_{\mathrm{n}}: A\right] B$, where Q is a quantifier symbol and x_{n} is a variable.

A is the restriction on $\mathrm{Q}: \quad B$ is the nuclear scope of Q restricts the quantifier to range over only those individuals that satisfy A
(1) Most student(s) left.

Every
Some
restricted quantifier: only ranges over members of $\operatorname{Val}($ STUDENT), not all of the individuals in D
(1) Most

Some

$$
\overbrace{\substack{\mathrm{Mx}_{1}: \operatorname{STUDENT}\left(\mathrm{x}_{1}\right) \\ \forall \mathrm{x}_{1} \\ \exists \mathrm{x}_{1}}} \text { LEAVE }\left(\mathrm{x}_{1}\right)
$$

(2) [Every happy student] left. Q restrictor nuc. scope

$$
\left[\forall \mathrm{x}_{1}: \operatorname{HAPPY}\left(\mathrm{x}_{1}\right) \& \operatorname{STUDENT}\left(\mathrm{x}_{1}\right)\right] \operatorname{LEAVE}\left(\mathrm{x}_{1}\right)
$$

(3) [At least three students who are sick] completed the exam.

$$
\begin{gathered}
\mathrm{Q} \text { restrictor } \quad \text { nuc. scope } \\
{\left[\geq 3 x_{1}: \operatorname{STUDENT}\left(x_{1}\right) \& \operatorname{SICK}\left(x_{1}\right)\right] \operatorname{COMPLETE}\left(x_{1}, e\right)}
\end{gathered}
$$

(4) Peter met [exactly two students from Tennessee]. nuc. scope $\quad Q \quad$ restrictor

$$
\left[=2 x_{1}: \operatorname{STUDENT}\left(x_{1}\right) \& \operatorname{FROM}\left(x_{1}, t\right)\right] \operatorname{MEET}\left(p, x_{1}\right)
$$

(5) [No student who failed Semantics 1] passed the midterm and the final.
Q restrictor nuc. scope
$n o=n o t+s o m e \quad \sim\left[\exists \mathrm{x}_{1}: \operatorname{STUDENT}\left(\mathrm{x}_{1}\right) \& \operatorname{FAIL}\left(\mathrm{x}_{1}, \mathrm{~s}\right)\right] \operatorname{PASS}\left(\mathrm{x}_{1}, \mathrm{~m}\right) \& \operatorname{PASS}\left(\mathrm{x}_{1}, \mathrm{f}\right)$
or
$n o=$ every + not $\quad\left[\forall \mathrm{x}_{1}: \operatorname{STUDENT}\left(\mathrm{x}_{1}\right) \& \operatorname{FAIL}\left(\mathrm{x}_{1}, \mathrm{~s}\right)\right] \sim\left(\operatorname{PASS}\left(\mathrm{x}_{1}, \mathrm{~m}\right) \& \operatorname{PASS}\left(\mathrm{x}_{1}, \mathrm{f}\right)\right)$
or
$n o=$ exactly zero $\quad\left[=Ø \mathrm{x}_{1}: \operatorname{STUDENT}\left(\mathrm{x}_{1}\right) \& \operatorname{FAIL}\left(\mathrm{x}_{1}, \mathrm{~s}\right)\right] \operatorname{PASS}\left(\mathrm{x}_{1}, \mathrm{~m}\right) \& \operatorname{PASS}\left(\mathrm{x}_{1}, \mathrm{f}\right)$

The Semantics of Restricted Quantifiers: The formula $\left[Q x_{n}: A\right] B$ is true if the relation expressed by Q holds between the set contributed by A and the set contributed by B. Otherwise, $\left[\mathrm{Qx} \mathrm{n}_{\mathrm{n}}: A\right] B$ is false.

Q expresses a relation between A and B by placing requirements on A, B, A - B, A $\cap \mathrm{B}$, and / or B - A (see below)
the restriction on Q : contributes a set of individuals A (the set of students, i.e., $\operatorname{Val}($ STUDENT))
the nuclear scope of Q : contributes another set of individuals B (the set of individuals who left, i.e., $\operatorname{Val}(\mathrm{LEAVE}))$

A - B: set of individuals that belong to A, but not B
$A \cap B$: set of individuals that belong to both A and B

For any set S, the cardinality of S (written $|S|$) is the number of individuals that are members of S.

If every member of A is also a member of B, then A is a subset of B (written $\mathbf{A} \subseteq \mathbf{B}$).

The subset relationship:

The cardinal quantifiers impose a requirement on the cardinality of $A \cap B$ (i.e., the number of individuals that belong to both A and B):
$=2$ (exactly two)
$|A \cap B|=2$
≥ 3 (at least three)
$|A \cap B| \geq 3$
\exists (some, $a(n)$, at least one)
$|A \cap B| \geq 1$
= $($ (exactly zero, no)

The proportional quantifiers impose a requirement on the proportional relationship between A and B :
\forall (every, each, all) $\quad \mathrm{A} \subseteq \mathrm{B}$ or equivalently, $\quad|\mathrm{A}-\mathrm{B}|=0$
M (most)

$$
|\mathrm{A} \cap \mathrm{~B}|>|\mathrm{A}-\mathrm{B}| \text { or equivalently, } \frac{|\mathrm{A} \cap \mathrm{~B}|}{|\mathrm{A}|}>.5
$$

