The Syntax and Semantics of Restricted Quantifiers

The Syntax of Restricted Quantifiers: If *A* and *B* are formulas, then so is $[Qx_n: A]$ *B*, where *Q* is a quantifier symbol and x_n is a variable.

A is the **restriction** on Q: restricts the quantifier to range over only those individuals that satisfy *A*

A is the **restriction** on Q: *B* is the **nuclear scope** of Q

restricted quantifier: only ranges over members of *Val*(STUDENT), not all of the individuals in *D*

- (2) [Every happy student] left. Q restrictor nuc. scope $[\forall x_1: HAPPY(x_1) \& STUDENT(x_1)] LEAVE(x_1)$
- (3) [At least three students who are sick] completed the exam. Q restrictor nuc. scope $[\ge 3x_1: STUDENT(x_1) \& SICK(x_1)] COMPLETE(x_1, e)$
- (4) Peter met [exactly two students from Tennessee]. nuc. scope Q restrictor $[=2x_1: STUDENT(x_1) \& FROM(x_1, t)] MEET(p, x_1)$
- (5) [No student who failed Semantics 1] passed the midterm and the final.

 Q restrictor nuc. scope

no = not + some ~[$\exists x_1$: STUDENT(x_1) & FAIL(x_1 , s)] PASS(x_1 , m) & PASS(x_1 , f) or no = every + not [$\forall x_1$: STUDENT(x_1) & FAIL(x_1 , s)] ~(PASS(x_1 , m) & PASS(x_1 , f)) or no = exactly zero [= $\emptyset x_1$: STUDENT(x_1) & FAIL(x_1 , s)] PASS(x_1 , m) & PASS(x_1 , f) **The Semantics of Restricted Quantifiers**: The formula $[Qx_n: A]$ B is true if the relation expressed by Q holds between the set contributed by A and the set contributed by B. Otherwise, $[Qx_n: A]$ B is false.

Q expresses a relation between A and B by placing requirements on A, B, A - B, $A \cap B$, and/or B - A (see below) the **restriction** on *Q*: contributes a set of individuals A (the set of students, i.e., *Val*(STUDENT))

the **nuclear scope** of Q: contributes another set of individuals B (the set of individuals who left, i.e., *Val*(LEAVE))

For any set S, the **cardinality** of S (written | S|) is the number of individuals that are members of S.

If every member of A is also a member of B, then A is a **subset** of B (written $A \subseteq B$).

The subset relationship:

A – B: set of individuals that belong to A, but not B

 $A \cap B$: set of individuals that belong to both A and B

B – **A**: set of individuals that belong to B, but not A

The **cardinal quantifiers** impose a requirement on the cardinality of $A \cap B$ (i.e., the number of individuals that belong to both A and B):

=2 (exactly two)	$ A \cap B = 2$
≥3 (at least three)	$ A \cap B \ge 3$
\exists (some, $a(n)$, at least one)	$ A \cap B \ge 1$
=Ø (exactly zero, no)	$ A \cap B = 0$

The **proportional quantifiers** impose a requirement on the proportional relationship between A and B:

$$\forall$$
 (every, each, all) $A \subseteq B$ or equivalently, $|A - B| = 0$ $|A \cap B| > |A - B|$ or equivalently, $\frac{|A \cap B|}{|A|} > .5$