The Language of Predicate Logic (PredL)

Vocabulary (list of basic expressions)

- (i) predicate constants: GREEK, MAN, ... (one-place) TALLER, FATHER, ... (two-place) GIVE, BETWEEN, ... (three-place)
- (ii) individual constants: a, b, c, d, e, f,
- (iii) connectives: ~ (negation)& , v , → (conjunction, disjunction, material implication)
- (iv) parentheses: (,)

Syntax (rules for forming grammatical sentences, or "formulas")

- (i) If P is an n-place predicate constant, and $c_1, c_2, ..., c_n$ are n individual constants, then $P(c_1, c_2, ..., c_n)$ is a formula of PredL.
- (ii) If A is a formula of PredL, then so is $\sim A$.
- (iii) If A and B are formulas of PredL, then so are (A & B), $(A \lor B)$, and $(A \to B)$.
- (iv) Nothing else is a formula.

(Note: typically, we omit the outermost pair of parentheses in a PredL formula. But <u>all</u> other parentheses are necessary to avoid any potential ambiguity.)

Semantics (rules that assign truth conditions to PredL formulas)

Two-step procedure for assigning truth conditions to PredL formulas:

(A) Provide denotations for individual/predicate constants by defining a **model**.

A **model** M consists of:

- (i) a set *D* of individuals, and
- (ii) an "assignment function" *Val*, which assigns a denotation (= semantic <u>val</u>ue) to each individual/predicate constant in PredL.

(The members of *D* are the inhabitants of our "world", while *Val* serves to establish a relationship between the "words" of PredL and our "world".)

- (B) Show how the truth conditions of a PredL formula depend upon the denotations of the individual/predicate constants that appear within it.
 - (i) If P is a one-place predicate constant and c is an individual constant, then P(c) is true if Val(c) ∈ Val(P).
 (I.e., P(c) is true if the individual denoted by c is a member of the set denoted by P—remember that '∈' stands for 'is a member of'.)
 Otherwise, P(c) is false.

Intuition: a one-place predicate "checks" whether an individual possesses a certain property.

- (ii) If P is a two-place predicate constant and c_1 , c_2 are individual constants, then $P(c_1, c_2)$ is true if $\langle Val(c_1), Val(c_2) \rangle \in Val(P)$. Otherwise, $P(c_1, c_2)$ is false.
- (iii) If P is a three-place predicate constant and c_1 , c_2 , c_3 are individual constants, then $P(c_1, c_2, c_3)$ is true if $\langle Val(c_1), Val(c_2), Val(c_3) \rangle \in Val(P)$. Otherwise, $P(c_1, c_2, c_3)$ is false.

Intuition: a two- or three-place predicate "checks" whether two or three individuals stand in a certain relationship to each other.

(iv) The truth conditions for complex formulas constructed with \sim , &, v, and \rightarrow are given by our familiar truth tables:

L
1

Α	В	(A & B)	(A v B)	$(A \rightarrow B)$
T	T	T	T	T
T	F	F	T	F
F	T	F	T	T
F	F	F	F	T