
CAS LX 502 Spring 2013
Semantics 1

 1

The Language of First-Order Predicate Logic (FOPL)

(Note: First-Order Predicate Logic differs from ordinary Predicate Logic in that
it contains individual variables and quantifiers. The designation “first-order”
reflects the fact that our variables only range over individuals (i.e., the possible
denotations for individual constants). A “second-order” logic is one that also
contains variables ranging over sets of individuals, sets of ordered pairs of
individuals, sets of ordered triplets of individuals, etc. (i.e., the possible
denotations for predicate constants).)

Vocabulary (list of basic expressions)

 (i) predicate constants: GREEK, MAN, ... (one-place)
 BITE, FATHER, ... (two-place)
 GIVE, BETWEEN, ... (three-place)

 (ii) individual constants: a, b, c, d, e, f, ...

(iii) individual variables: x1, x2, x3, x4, ...

Together, the individual constants of FOPL and the individual variables of FOPL
constitute the terms of FOPL.

(iv) connectives: ~ (negation)
 & (conjunction), ∨ (disjunction), → (material implication)

(v) quantifiers: ∀ (universal, read as ‘for all/every individual...’)
 ∃ (existential, read as ‘there is/exists an individual ...’)

(vi) parentheses: (,)

Syntax (rules for forming grammatical sentences, or “formulas”)

 (i) If P is an n-place predicate constant and t1, t2, ... , tn are n terms,
 then P(t1, t2, ... , tn) is a formula of PredL.

 (ii) If A is a formula of FOPL, then so is ~A.

(iii) If A and B are formulas of FOPL, then so are (A & B), (A ∨ B), and (A → B).

(iv) If A is a formula of FOPL, then so are ∀xnA and ∃xnA,
 for any individual variable xn.

 (v) Nothing else is a FOPL formula.

(Note: typically, we omit the outermost pair of parentheses in a FOPL formula.
But all other parentheses are necessary to avoid any potential ambiguity.)

CAS LX 502 Spring 2013
Semantics 1

 2

Semantics (rules that assign truth conditions to FOPL formulas)

Two-step procedure for assigning truth conditions to FOPL formulas:

(A) Specify denotations for individual/predicate constants and individual
 variables by providing a model and an assignment function.

A model M consists of: (i) a set D of individuals (the “inhabitants” of M), and
(ii) a “valuation function” Val, which specifies a denotation, or semantic value,
for each individual/predicate constant in FOPL.

An assignment function g associates each individual variable in FOPL with a
member of D (an inhabitant of our model M).

We also give ourselves a handy means of referring to the denotation of a term t
relative to a model M and an assignment function g:

 [[t]] M, g = Val(t) if t is an individual constant
 = g(t) if t is an individual variable

(B) Show how the truth conditions for a FOPL formula depend upon the
 denotations of the vocabulary items that appear within it.

 (i) If P is a one-place predicate constant and t is a term, then P(t) is true
 relative to a model M and an assignment function g if [[t]] M, g ∈ Val(P).
 Otherwise, P(t) is false relative to M and g.

 (ii) If P is a two-place predicate constant and t1, t2 are terms, then P(t1, t2) is true
 relative to M and g if <[[t1]] M, g , [[t2]] M, g > ∈ Val(P).
 Otherwise, P(t1, t2) is false relative to M and g.

(iii) If P is a three-place predicate constant and t1, t2, t3 are terms, then P(t1, t2, t3)

is true relative to M and g if <[[t1]] M, g , [[t2]] M, g , [[t3]] M, g > ∈ Val(P).
 Otherwise, P(t1, t2, t3) is false relative to M and g.

(read on for rules (iv) and (v), which deal with formulas involving ∀ and ∃ …)

(vi) The truth conditions for complex formulas constructed with ~, &, ∨, and →
 are given by our familiar truth tables:

A ~A A B (A & B) (A ∨ B) (A → B)
T F T T T T T
F T T F F T F

 F T F T T
 F F F F T

CAS LX 502 Spring 2013
Semantics 1

 3

How do we determine whether the universally quantified formula ∀x3GREEK(x3)
is true or false relative to the following model M and assignment function g?

M: D = { Dexter, Rita, Frank, Maria, Fido }

Val(m) = Maria Val(f) = Fido Val(d) = Dexter
Val(MAN) = { Dexter, Frank } Val(WOMAN) = { Rita, Maria }
Val(DOG) = { Fido } Val(GREEK) = { Rita, Maria, Dexter }

 Val(BITE) = { <Fido, Dexter> , <Fido, Charlie> }

g: x1 Frank
 x2 Rita
 x3 Maria
 . . .

 ∀x3 GREEK(x3)
 ↑ ↑
 TRUE if… every way of assigning makes this
 a denotation to x3… formula true

g[x3 Dexter]: x1 Frank
 x2 Rita Is GREEK(x3) true rel. to M and g[x3 Dexter] ?
 x3 Dexter

 . . .
g[x3 Rita]: x1 Frank
 x2 Rita Is GREEK(x3) true rel. to M and g[x3 Rita] ?
 x3 Rita

 . . .
g[x3 Frank]: x1 Frank
 x2 Rita Is GREEK(x3) true rel. to M and g[x3 Frank] ?
 x3 Frank

 . . .
g[x3 Maria]: x1 Frank
 x2 Rita Is GREEK(x3) true rel. to M and g[x3 Maria] ?
 x3 Maria

 . . .
g[x3 Fido]: x1 Frank
 x2 Rita Is GREEK(x3) true rel. to M and g[x3 Fido] ?
 x3 Fido

 . . .

Conclusion: is ∀x3GREEK(x3) true relative to M and g?

CAS LX 502 Spring 2013
Semantics 1

 4

How do we determine whether the existentially quantified formula
∃x1GREEK(x1) is true or false relative to M and g?

M: D = { Dexter, Rita, Frank, Maria, Fido }

Val(m) = Maria Val(f) = Fido Val(d) = Dexter
Val(MAN) = { Dexter, Frank } Val(WOMAN) = { Rita, Maria }
Val(DOG) = { Fido } Val(GREEK) = { Rita, Maria, Dexter }

 Val(BITE) = { <Fido, Dexter> , <Fido, Charlie> }

g: x1 Frank
 x2 Rita
 x3 Maria
 . . .

 ∃x1 GREEK(x1)
 ↑ ↑
 TRUE if… there is at least one way to that makes this
 assign a denotation to x1… formula true

g[x1 Dexter]: x1 Dexter
 x2 Rita Is GREEK(x1) true rel. to M and g[x1 Dexter] ?
 x3 Maria

 . . .
g[x1 Rita]: x1 Rita
 x2 Rita Is GREEK(x1) true rel. to M and g[x1 Rita]?
 x3 Maria

 . . .
g[x1 Frank]: x1 Frank
 x2 Rita Is GREEK(x1) true rel. to M and g[x1 Frank]?
 x3 Maria

 . . .
g[x1 Maria]: x1 Maria
 x2 Rita Is GREEK(x1) true rel. to M and g[x1 Maria]?
 x3 Maria

 . . .
g[x1 Fido]: x1 Fido
 x2 Rita Is GREEK(x1) true rel. to M and g[x1 Fido]?
 x3 Maria

 . . .

Conclusion: is ∃x1GREEK(x1) true relative to M and g?

CAS LX 502 Spring 2013
Semantics 1

 5

Semantics (rules that assign truth conditions to FOPL formulas, cont’d)

Rules for assigning truth conditions to quantified formulas involving ∀ and ∃:

(iv) If A is a FOPL formula and xn is an individual variable, then ∀xnA is true
 relative to M and g if for each individual d in D, the formula A is true
 relative to M and g[xn d]. Otherwise, ∀xnA is false relative to M and g.

(v) If A is a FOPL formula and xn is an individual variable, then ∃xnA is true
 relative to M and g if for at least one individual d in D, the formula A is true
 relative to M and g[xn d]. Otherwise, ∃xnA is false relative to M and g.

The modified assignment function g[xn d] is just like g, except that it
associates the variable xn with the individual d.

