Individual Variables and Assignment Functions in PredL

Additions/Modifications to our logical language PredL

I. A new kind of expression for our PredL vocabulary:
individual constants: a, b, c, d, \ldots individual variables: $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots$
(old; correspond to prop. names)
(new; correspond to pronouns)

Together, the individual constants of PredL and the individual variables of PredL constitute the terms of PredL.
II. A slight modification to our PredL syntax rule for constructing simple predicate/ argument formulas:

If P is an n-place predicate constant, and $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}$ are n terms, then $\mathrm{P}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ is a formula of PredL.
III. A new piece of technology for our PredL semantics, namely:
an assignment function g, which assigns a denotation (= an inhabitant of our model M) to each individual variable.

We also give ourselves a handy means of referring to the denotation of a term \mathbf{t} relative to a model M and an assignment function g :

$$
\begin{aligned}
\llbracket \mathrm{t} \rrbracket^{M, g} & =\operatorname{Val}(\mathrm{t}) \text { if } \mathrm{t} \text { is an individual constant } \\
& =g(\mathrm{t}) \text { if } \mathrm{t} \text { is an individual variable }
\end{aligned}
$$

IV. A slight modification to the rules of our PredL semantics which show how the truth conditions of a PredL formula depend upon the denotations of the vocabulary items that appear within it:
(i) If P is a one-place predicate constant and t is term, then $\mathrm{P}(\mathrm{t})$ is true relative to a model M and an assignment function g if $\llbracket \mathrm{t} \rrbracket^{M, g} \in \operatorname{Val}(\mathrm{P})$.
Otherwise, $\mathrm{P}(\mathrm{t})$ is false relative to M and g.
(ii) If P is a two-place predicate constant and $\mathrm{t}_{1}, \mathrm{t}_{2}$ are terms, then $\mathrm{P}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ is true relative to M and g if $<\llbracket \mathrm{t}_{1} \rrbracket^{M, g}, \llbracket \mathrm{t}_{2} \rrbracket^{M, g}>\in \operatorname{Val}(\mathrm{P})$.
Otherwise, $\mathrm{P}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ is false relative to M and g.
(and similarly for our rule concerning three-place predicate constants...)

Some practice calculating the truth values of PredL formulas

M: $\quad \mathrm{D}=\{$ Dexter, Rita, Debra, Charlie, Maria, Fido \}
$\operatorname{Val}(\mathrm{m})=$ Maria $\quad \operatorname{Val}(\mathrm{f})=$ Fido $\quad \operatorname{Val}(\mathrm{d})=$ Dexter
$\operatorname{Val}(\mathrm{MAN})=\{$ Dexter, Charlie $\} \operatorname{Val}(\mathrm{WOMAN})=\{$ Rita, Debra, Maria $\}$
$\operatorname{Val}(\mathrm{DOG})=\{$ Fido $\} \quad \operatorname{Val}($ GREEK $)=\{$ Rita, Maria $\}$
$\operatorname{Val}($ BITE $)=\{<$ Fido, Dexter $>,<$ Fido, Charlie $>\}$
$g_{1}:\left(\begin{array}{c}\mathrm{x}_{1} \mapsto \\ \mathrm{x}_{2} \mapsto\end{array}\right.$ Rita $\left.\begin{array}{c}\text { Debra } \\ \mathrm{x}_{3} \mapsto \\ \mathrm{x}_{4} \mapsto \text { Dexter } \\ \cdots\end{array}\right)$

$$
g_{2}: \quad\left(\begin{array}{c}
\mathrm{x}_{1} \mapsto \\
\mathrm{x}_{2} \mapsto
\end{array} \text { Maria } \begin{array}{c}
\text { Debra } \\
\mathrm{x}_{3} \mapsto
\end{array} \text { Charlie } \begin{array}{c}
\mathrm{x}_{4} \mapsto
\end{array} \text { Debra } \begin{array}{c}
\ldots
\end{array}\right)
$$

Is $\operatorname{GREEK}\left(\mathrm{x}_{4}\right)$ true relative to M and g_{1} ? Is it true relative to M and g_{2} ?

Is GREEK (m) true relative to M and g_{1} ? Is it true relative to M and g_{2} ?

Is BITE $\left(\mathrm{f}, \mathrm{x}_{3}\right)$ true relative to M and g_{1} ? Is it true relative to M and g_{2} ?

Is BITE (f, d) true relative to M and g_{1} ? Is it true relative to M and g_{2} ?

