The Syntax and Semantics of Restricted Quantifiers

The Syntax of Restricted Quantifiers: If *A* and *B* are formulas, then so is $[Qx_n: A] B$, where Q is a quantifier symbol and x_n is a variable.

CAS LX 502 Semantics 1

to A, but

not B

The Semantics of Restricted Quantifiers: The formula $[Qx_n: A] B$ is true if the relation expressed by Q holds between the set contributed by A and the set contributed by B. Otherwise, $[Qx_n: A] B$ is false.

The **cardinal quantifiers** impose a requirement on the cardinality of $A \cap B$ (i.e., the number of individuals that belong to both A and B):

to B, but

not A

=2 (exactly two)	$ A \cap B = 2$
≥3 (at least three)	$ A \cap B \ge 3$
\exists (some, $a(n)$, at least one)	$ A \cap B \ge 1$
=Ø (exactly zero, no)	$ \mathbf{A} \cap \mathbf{B} = 0$

to both A

and B

The **proportional quantifiers** impose a requirement on the proportional relationship between A and B:

$$\begin{array}{ll} \forall \ (every, each, all) \\ M \ (most) \end{array} \qquad \begin{array}{ll} A \subseteq B & \text{or equivalently}, \quad |A - B| = 0 \\ |A \cap B| > |A - B| & \text{or equivalently}, \quad \frac{|A \cap B|}{|A|} > .5 \end{array}$$