
CAS LX 522
Syntax I

Agree, head movement,
and the strength of features

(5.4)11

Inflecting verbs

• Returning now to the question of how the
verb comes to look the way it does.

1) Pat ate lunch.

2) Pat eats lunch.

3) Pat has eaten lunch.

4) Pat was eating lunch.

5) Pat might have been eating lunch.

s

Affix hopping
• Each auxiliary seems to control the form of

the form that follows it. We can include T in
this generalization as well.

Pat (T) eat Pat (T) have eat
ens

Pat (T) be eat
ings
is Pat (T) have be eat

ens ing

might have been eating
Now, look at how
these appear in the
tree.

Basically, certain
things (T, M, Perf,
Prog) assign a verbal
form to the next
thing (M, Perf, Prog, v)
down.

This is a little bit like
the assignment of
reference through
binding.

TP

NP
Pat

T�

T+M
might

MP

< might > PerfP

Perf
have

ProgP

Prog
be

vP

< Pat > v �

v+V
eat

VP

< eat > NP
lunch

might have been eating
The way we’ll model
this is by supposing
that certain forms
take endings.
Inflectional endings.
Like en, ing, s, etc.

Specifically, suppose
that the inflectional
ending is
represented by an
inflectional feature,
like [Infl: Perf], or
[Infl: Prog], or
[Infl: Past].

TP

NP
Pat

T�

T+M
might

MP

< might > PerfP

Perf
have

ProgP

Prog
be

vP

< Pat > v �

v+V
eat

VP

< eat > NP
lunch

might have been eating
The form comes
out of the lexicon
without a specific
ending, though—
what ending it gets
is determined after
it is Merged into
the tree, by the
next thing up.

That is: whether eat
comes out as eats
or eaten or eating
depends on
whether the next
thing Merged is T,
Perf, or Prog.

TP

NP
Pat

T�

T+M
might

MP

< might > PerfP

Perf
have

ProgP

Prog
be

vP

< Pat > v �

v+V
eat

VP

< eat > NP
lunch

might have been eating
So, at the point
where, say, Prog is
first Merged into the
structure, its
Inflectional feature is
unvalued.

It will be valued by
the next thing
Merged.

We will also assume
that an unvalued
inflectional feature is
uninterpretable. It
must be fixed.

[uInfl:]

TP

NP
Pat

T�

T+M
might

MP

< might > PerfP

Perf
have

ProgP

Prog
be

vP

< Pat > v �

v+V
eat

VP

< eat > NP
lunch

Agree & unvalued features

• The idea is that a lexical item
might have an unvalued feature,
which is uninterpretable as it
stands and needs to be given
a value in order to be
interpretable.

• This gives us two kinds of uninterpretable
features (unvalued and regular-old uninterpretable
features), and two ways to check them (valuing for
unvalued features, checking under sisterhood for
the other kind).

• Unvalued [uF:]. Regular-old [uF].

Agree
In the configuration
X[F: val] … Y[uF:]
F checks and
values uF, resulting in
X[F: val] … Y[uF: val].

eat_?

So, v has a [uInfl:]
feature.

vP

v
[v, uN, uInfl:]

VP

V
eat

NP
lunch

past + eat_?

If T is Merged next,
it will determine
the inflection that
will go on the verb.
If T is [past], then
the verb will
become ate.

So, T values the
[uInfl:] feature of v.
As [past], or [pres].

T
[T, past, . . .]

vP

NP
Pat

v �

v+V
eat

[v, uInfl:, uN, . . .]

VP

< eat > NP
lunch

ate
Now, Infl is valued
(and is no longer
uninterpretable).

Let’s suppose that
everything that has
an inflectional ending
of this sort has a
[uInfl:] feature, then.

That is: Prog, Pres,
M, and v all have a
[uInfl:] feature.

And T, M, Prog, and
Pres can value that
feature.

TP

T
[T, past, . . .]

vP

NP
Pat

v �

v+V
eat

[v, uInfl:past, uN, . . .]

VP

< eat > NP
lunch

Pronunciation:
T is not pronounced,
v+V is pronounced as
ate (past form of eat)

have_? + eaten
Agree:
Perf values the
[uInfl:] feature of v.

PerfP

Perf
have

[Perf, uInfl:]

vP

NP
Pat

v �

v+V
eat

[v, uInfl:perf, uN, . . .]

VP

< eat > NP
lunch

had + eaten
Agree:
T values the [uInfl:]
feature of Perf.TP

T
[T, past]

PerfP

Perf
have

[Perf, uInfl:past]

vP

NP
Pat

v �

v+V
eat

[v, uInfl:perf, uN, . . .]

VP

< eat > NP
lunch

What has [uInfl:], what can
value [uInfl:]

• Things of these categories have [uInfl:] features:

• v, M, Perf, Prog

• [uInfl:] features can be valued (via Agree) by:

• Tense features (past, present) of T. -s or -ed.

• Perf feature of Perf. -en.

• Prog feature of Prog. -ing.

• M feature of M. -Ø (silent)

1) Pat [past] ha-d be-en eat-ing lunch.

The basic operations
• Take some lexical items (a “numeration” or “lexical array”)

• Combine any two of them (Merge) to make a new item.

• Lexical items can have uninterpretable features. Merge can
check these features. All of the uninterpretable features
must be checked by the end of the derivation.

• Attach one to another (Adjoin).

• Adjoin does not check features.

• Move stuff around.

• What can you do? What can’t you do? Does it check
features? Why do you do it? What’s really happening?

Move
• There are two basic kinds of movement. We’ve seen

examples of each.

• One is head-movement, where a head moves up
to join with another head.

• Examples: V moves to v, {Perf/Prog/M} moves to T

• The other is XP-movement, where a maximal
projection (an XP) moves up to a specifier of a higher
phrase.

• Example: The subject moving to SpecTP.

Solving a problem via movement

• We will assume that, like with Merge, Move occurs to
“solve a problem.” And the main problem our system has is
unchecked uninterpretable features. So, Move must check
features.

• We have two ways to check features so far. One of them is
under sisterhood (Merge). The other is “at a
distance” (Agree).

• What kind of problem could Move solve? Well, for one
thing, it must not be able to solve the problem in place,
without moving. Seems to need “closeness.”

Two existing means of
checking features

• P has a [uN] feature. Merge it
with an N(P), and the [uN]
feature of P is checked.

• T has a [tense:past] feature.

• Strictly speaking [tense:past]
doesn’t look like it’s a valued
[Infl] feature. We need to
stipulate in addition a list of
things that can value [Infl]
features.

c-selection
If X[F] and Y[uF] are
sisters, the uF feature
of Y is checked:
Y[uF].

inflection
If X[F] c-commands
Y[uF:] the uF feature
of Y is valued and
checked: Y[uF:val].

Generalizing Agree
• Agree requires:

• An uninterpretable or
unvalued feature

• A matching feature

• Line of sight
(c-command)

• And results in:

• Valuing of unvalued
features.

• Checking of the
uninterpretable
features.

• Our first version of
checking (sisterhood)
is a special case of this
more general
conception of Agree.

• Except that we do want the
[uN] feature of P to be
checked by directly Merging P
and an NP—not “at a distance”
like agreement.

Strong features
• In order to check the [uN] feature of P only through

Merge (sisterhood), we will define a special kind of
uninterpretable feature: the strong feature.

• A strong feature can only be checked when the
matching feature is on an element that shares the
same mother node.

• We will write strong features with a *:

• P [P, uN*]

• C-selection features are strong.

Generalizing Agree
• Matching:

• Identical features match. [N] matches [uN].

• Some features match several things. [uInfl:] can match
values of the [tense] feature ([tense:pres], [tense:past]),
as well as the category features [Perf], [Prog], [M].

• What if there are two options? We’ll see later that only
the closest one participates in Agree.

• Valuing/Checking:

• An unvalued feature is always uninterpretable.

• Valuing a feature will check it.

• A privative feature is simply checked when it matches.

Other properties of Agree
(mainly relevant later)

• Strong features Agree first.
• Where a single head has more than one feature that must Agree,

the strong ones go first.

The system is lazy.
• Agree always goes with the closest option it can find in order to

check an uninterpretable feature.

• If Agree locates a matching feature on X for one uninterpretable
feature, and X has a different feature that also matches, both
features will be checked.

• Examples are coming up later, but for cross-referencing: these
properties are important for subject agreement.

Agree
• If:

• X has feature [F1], Y has feature [F2]

• X c-commands Y or Y c-commands X

• [F1] and/or [F2] are/is uninterpretable.

• [F1] matches [F2]

• X and Y are close enough, meaning:

• There is no closer matching feature between X and Y.

• If [F1] or [F2] is strong, X and Y share the same mother node

• Then:

• Any unvalued feature ([F1] or [F2]) is valued.

• The uninterpretable feature(s) is/are checked.

Comments on Agree

• This statement of Agree allows for several different
configurations:

• [uF]…[F]! ! ! [F]…[uF]!! ! [uF]…[uF]
c-selection! ! ! Inflection!! ! Case

• Strong features must be checked very locally.

• Merge can provide this locality.

• Move can also provide this locality.

• Strong features are what motivates
movement.

V+v=?

• When V moves to v, they combine in a way that we have been
writing just as V+v. Let’s be more precise.

• In fact, we assume that V head-adjoins (adjoins, head-to-head)
to v. This is the same sort of structure that Adjoin creates
between maximal projections.

• The v head is replaced by the v head with V adjoined.

• Adjunction does not change projection levels—v is still a minimal
projection, still the head of vP. But it is a complex head (it’s a v
with a V adjoined to it).

v �

v VP

< V > NPV
eat

v
[uV*, . . .]

• What happens to the VP from which the V moved?

• It is still a VP, it must still have a head. The features of the VP are the
features of the head (recall for example, that checking the
uninterpretable feature on the head is the same as checking the
uninterpretable feature on the projection of the head). The VP is still a
VP, its head is still a verb (with category feature [V]), and presumably all
the rest of the features as well.

• We notate the original location of the V by writing <V> (standing for
the “trace” left behind by the original V). But since <V> must still be a
bundle of features, the same one that was there before movement, <V>
is really just another copy (or, well, the original) of the verb.

V+v=?
v �

v VP

< V > NPV
eat

v
[uV*, . . .]

• Moral: “Head-movement” can be viewed as Copy+Adjoin.

• Make a copy of V. Replace the original v is replaced by the syntactic
object formed by Adjoining the copy of V to v.

• If v has a [uV*] feature, this puts V close enough to v to check that
feature. This is why we move V.

• Note: This appears to make a change inside the object. Merge always
happens at the root. However: Think about the root. It has the
features of v, its head. It is a projection of v. There is a sense in which
this is still affecting only the root node, it’s adjunction to its head.

V+v=?
v �

v VP

< V > NPV
eat

v
[uV*, . . .]

• We always move V to v.

• Reason:
v always has a [uV*] feature.

• But why wasn’t this checked when we Merged v and VP? (Like the
[uN*] feature of P is checked when we Merge P and NP…)

• The Hierarchy of Projections says that v > VP: When you finish VP,
you Merge it with v. Only then do you Move and Merge with other
things. The HoP takes priority.

• When you Merge two nodes in order to satisfy the HoP, you don’t
get to Agree. You have to move to the next step (Merge or Move).

V+v=?
v �

v VP

< V > NPV
eat

v
[uV*, . . .]

• That’s craziness, isn’t it? Now instead of one V, we have two identical copies. Why
don’t we get Pat Pat ate ate lunch?

• We need both copies (the higher one to check the feature, the lower one to head
the original projection of V). But on the other hand, the verb was picked from the
lexicon just once.

A-P interface: Only the highest copy is pronounced.
• Spelling out the idea that you “move it but leave a trace.” Highest copy = the one

that is not c-commanded by another copy. A head V adjoined to another head v c-
commands the same nodes that v did. This is a stipulation, but if we define c-
command in a more complicated way, it comes to this. A general property of
adjuncts is that they are “just as high” in the tree as the thing they adjoined to, so
they “see” (c-command) the same stuff as the thing they adjoined to.

V+v=?
v �

v VP

< V > NPV
eat

v
[uV*, . . .]

A note on node labeling

• A node is labeled as a maximal projection (XP) if
there are no more strong features left to check.

• Notice that v has [uInfl:] even when we’re
finished with it and Merge it with the next
head up (M, Perf, Prog, Neg, or T). But we still
want there to be a vP.

• C-selection features (like the [uN*] feature(s)
of V, or the [uN*] feature of P) are always
strong.

T has [uN*]
(“EPP”)

• V moves to v:

• v has a [uV*] feature (always).

• Moving the subject from SpecvP to SpecTP:

• T has a [uN*] feature (always).

• Moving the subject (making a copy and
Merging it with T) put the N feature of the
subject close enough to T for the [uN*]
feature to be checked.

As for why you
don’t satisfy the
[uV*] feature of
v the same way,
by moving VP
into SpecvP, we
could
speculate, but
there’s no
particularly
satisfying
answer. We’ll
set that aside.

