
CAS LX 522
Syntax I

do-support, subjects, agreement, and case
(5.5; 6.1-6.3)

12

French vs. English
• In English, adverbs cannot come between the verb and

the object.

1) *Pat eats often apples.

2) Pat often eats apples.

• In French it’s the other way around.

3) Jean mange souvent des pommes.
Jean eats often of.the apples
‘Jean often eats apples.’

4) *Jean souvent mange des pommes.

• If we suppose that the basic structures are the same, why
might that be?

French vs. English
• Similarly, while only auxiliaries in English show up

before negation (not)…

• John does not love Mary.

• John has not eaten apples.

• …all verbs seem to show up before negation (pas)
in French:

• Jean (n’)aime pas Marie.
Jean (ne) loves not Marie
‘Jean doesn’t love Marie.’

• Jean (n’)a pas mangé des pommes.
Jean (ne)has not eaten of.the apples
‘Jean didn’t eat apples.’

V raises to T in French
• What it looks like is that

both V and auxiliaries
raise to T in French.

• This is a parametric
difference between
English and French.

• A kid’s task is to
determine whether V
moves to T and whether
auxiliaries move to T.

T values
[uInfl:] on

Aux

T values
[uInfl:] on

v

English Strong Weak

French Strong Strong

Zinédine (n’) aime pas Marco
• First, build the vP just as in English.

• Merge aime and Marco to form the VP, Merge v and VP to satisfy the HoP,
move V to Adjoin to v to check v’s [uV*] feature, Merge Zinédine and vʹ.

vP

NP
Zinédine

v �

v VP

< V > NP
Marco

V
aime

v
[uInfl:]

Zinédine (n’) aime pas Marco
• Merge Neg with vP to form NegP (following the HoP).

NegP

Neg
pas

vP

NP
Zinédine

v �

v VP

< V > NP
Marco

V
aime

v
[uInfl:]

Zinédine (n’) aime pas Marco
• Merge T with NegP to form Tʹ (again, following the HoP).

• Now T with its [tense:pres] feature c-commands v and its [uInfl:]
feature. They Match. But in French, when [uInfl:] on v is valued by
T it is strong. So…

T�[tense:pres, T, uN*, . . .]

T NegP

Neg
pas

vP

NP
Zinédine

v �

v VP

< V > NP
Marco

V
aime

v
[uInfl:pres*]

Zinédine (n’) aime pas Marco
• v has to move to T. Notice that at this point v has V adjoined to it.

You can’t take them apart.The whole complex head
moves to T.

T�[tense:pres, T, uN*, . . .]

T NegP

Neg
pas

vP

NP
Zinédine

v �

< v > VP

< V > NP
Marco

v T

V
aime

v
[uInfl:pres*]

Zinédine (n’) aime pas Marco
• And then, we move the subject up to SpecTP to check the final

uninterpretable (strong) feature of T, [uN*].

So, French is just like English,
except that even v moves to T.

TP

NP
Zinédine

T�[tense:pres, T, uN*, . . .]

T NegP

Neg
pas

vP

< NP > v �

< v > VP

< V > NP
Marco

v T

V
aime

v
[uInfl:pres]

Swedish
• Looking at Swedish, we can see that not only do languages

vary on whether they raise main verbs to T, languages also
vary on whether they raise auxiliaries to T:

• …om hon inte köpte boken
whether she not bought book-the
‘…whether she didn’t buy the book.’

• …om hon inte har köpt boken
 whether she not has bought book-the
‘…whether she hasn’t bought the book.’

• So both parameters can vary.

• Remember the light box: By saying these were parameters, we
predicted that we would find these languages.

Typology of verb/aux raising
• Interestingly, there don’t

seem to be languages that
raise main verbs but not
auxiliaries.

• This double-binary
distinction predicts there
would be.

• It overgenerates a smidge.

• This is a pattern that we
would like to explain
someday, another mystery
about Aux to file away.

• Sorry, we won’t have any
satisfying explanation for
this gap this semester.

T values
[uInfl:] on

Aux

T values
[uInfl:] on

v
English Strong Weak
French Strong Strong

Swedish Weak Weak

Unattested Weak Strong

Irish
• In Irish, the basic word order is VSO (other languages have

this property too, e.g., Arabic)

1) Phóg Máire an lucharachán.
kissed Mary the leprechaun
‘Mary kissed the leprechaun.’

• We distinguish SVO from SOV by supposing that the head-
complement order can vary from language to language (heads
precede complements in English, heads follow complements in
Japanese).

• We may also be able to distinguish other languages (OVS,
VOS) by a parameter of specifier order.

• But no combination of these two parameters can give us VSO.

Irish
• But look at auxiliary verbs in Irish:

1) Tá Máire ag-pógáil an lucharachán.
is Mary ing-kiss the leprechaun
‘Mary is kissing the leprechaun.’

• We find that if an auxiliary occupies the verb slot at
the beginning of the sentence, the main verb appears
between the subject and verb: Aux S V O.

• What does this suggest about

• The head-parameter setting in Irish?

• How VSO order arises?

SVO to VSO

• Irish appears to be essentially an SVO language, like
French.

• Verbs and auxiliaries raise past the subject to yield VSO.

• We can analyze the Irish pattern as being minimally
different from our existing analysis of French— just one
difference, which we hypothesize is another parametric
difference between languages.

• V and Aux both raise to T (when tense values the
[uInfl:] feature of either one, [uInfl:] is strong) in Irish,
just as in French.

French vs. Irish
• Remember this step in the French derivation before?

(I’ve omitted negation to make it simpler.)

• What if we stopped here?

• In French it would crash (why?).

• But what if it didn’t crash in Irish?

• What would have to be different? T�[tense:pres, T, uN*, . . .]

T vP

NP
Zinédine

v �

< v > VP

< V > NP
Marco

v T

V
aime

v
[uInfl:pres*]

Parametric differences
• We could analyze Irish as being just like French except without

the strong [uN*] feature on T.

• Without that feature, the subject doesn’t need to move to SpecTP.
The order would be VSO, or AuxSVO.

• So, languages can vary in, at least:

• Head-complement order

• (Head-specifier order)

• Whether [uInfl:] on Aux is strong or weak when valued by T

• Whether [uInfl:] on v is strong or weak when valued by T

• Whether T has a [uN*] feature or not.
(Later, when we look at German, we’ll suggest a different analysis of Irish,
but this will work for now.)

do-support
• In French, verbs move to T. In English, they don’t move to T.

• That’s because in French, when [tense:past] values [uInfl:] on v, it
is strong, and in English, it is weak.

• What this doesn’t explain is why do appears sometimes in
English, seemingly doing nothing but carrying the tense (and
subject agreement).

• The environments are complicated:
1) Tom did not commit the crime.
2) Tom did not commit the crime, but someone did.
3) Zoe and Danny vowed to prove Tom innocent,

and prove Tom innocent they did.
4) Tom (has) never committed that crime.

do-support

• When not separates T and v, do appears in T to carry the tense
morphology.

• When T is stranded due to VP ellipsis or VP fronting, do appears in T
to carry the tense morphology.

• When never (or any adverb) separates T and v, tense morphology
appears on the verb (v).

• So, do appears when T is separated from the verb, but adverbs like
never aren’t “visible”, they aren’t in the way.

• The environments are complicated:
1) Tom did not commit the crime.
2) Tom did not commit the crime, but someone did.
3) Zoe and Danny vowed to prove Tom innocent,

and prove Tom innocent they did.
4) Tom (has) never committed that crime.

Technical difficulties
• How do we generally know to pronounce V+v as a past

tense verb?

• T values the [uInfl:] feature of v. The presumption is that eat
+v[uInfl:past] sounds like “ate.” And T doesn’t sound like
anything.

• But this happens whether or not v is right next to T. v still has a
[uInfl:] feature that has to be checked.

• So, the questions are, how do we:

• Keep from pronouncing the verb based on v’s [uInfl:] feature if T isn’t
right next to it?

• Keep from pronouncing do at T if v is right next to it?

• We need to connect T and v somehow.

Technical difficulties
• The connection between T and v is that (when there

are no auxiliaries), T values the [uInfl:] feature of v.

• This sets up a relationship between the two heads.

• Adger calls this relationship a chain.

• We want to ensure that tense features are
pronounced in exactly one place in this chain.

• If the ends of the chain are not close enough together,
tense is pronounced on T (as do). If they are close
enough together, tense is pronounced on v+V.

Technical difficulties

• Let’s be creative: Suppose that the tense features on v (the
value of the [uInfl:] feature) “refer back” to the tense
features on T.

• Agree can see relatively far (so T can value the [uInfl:] feature
of v, even if it has to look past negation).

• But “referring back” is more limited, basically only available to
features that are sisters. Negation will get in the way for this.

• So if you try to pronounce tense on v but T is too far away, the
back-reference fails, and v is pronounced as a bare verb. But
the tense features have to be pronounced somewhere, so
they’re pronounced on T (as do).

PTR
• Adger’s proposal:

• Pronouncing Tense Rule (PTR)
In a chain (T[tense], v[uInfl:tense]), pronounce the tense
features on v only if v is the head of T’s sister.

• NegP, if there, will be the sister of T (HoP), but Neg has
no [uInfl:] feature. do will be inserted.

• Adverbs adjoin to vP, resulting in a vP. v has a [uInfl:]
valued by T and adverbs don’t get in the way of vP being
the sister of T. Tense is pronounced on the verb (v).

• If vP is gone altogether, do is inserted.

Pat did not call Chris
• So, here, T and v form a chain because [tense:past] valued

[uInfl:past]. But v is not the head of T’s sister.

TP

NP
Pat

T�

T
[tense:past]

NegP

Neg
not

vP

< Pat > v �

v VP

< V > NP
Chris

V
call

v
[uInfl:past]

Pat did not call Chris
• Do-support comes to the rescue. What this means is just that T is

pronounced as do with the tense specifications on T. According to PTR,
we don’t pronounce them on v. The tree doesn’t change.

TP

NP
Pat

T�

T
[tense:past]

NegP

Neg
not

vP

< Pat > v �

v VP

< V > NP
Chris

V
call

v
[uInfl:past]

did

Pat never called Chris
• If there is an adverb like never, PTR still allows tense to be pronounced on v (so

T doesn’t have any pronunciation of its own at all).

TP

NP
Pat

T�

T
[tense:past]

vP

AdvP
never

vP

< Pat > v �

v VP

< V > NP
Chris

V
call

v
[uInfl:past]

Historical interlude
• Back in the days of yore, people

hypothesized that Pat will charm
snakes had a structure like this.

• The subject NP Pat was in the
specifier of “IP” (what we call “TP”),
and the VP contained only the verb
charm and the object NP snakes.

• Pat got an Agent θ-role by being in
SpecIP, even though the fact that
there is an Agent θ-role to be had is
determined by the verb down in the
VP.

IP

NP
Pat

I�

I
will

VP

V
charm

NP
snakes

The students will all...
• This predicts the normal word order

pretty well, and so it was hypothesized
that the verb simply assigned one of its
θ-roles directly to SpecIP.

• No big deal, syntax works in strange
and mysterious ways.

• At a certain point, someone started
thinking about sentences like these:

1) All the students will take the exam.
2) The students will all take the exam.

• It’s fairly clear here that all the students
is an NP, that it forms a coherent unit, a
coherent concept. All really belongs
with the students.

IP

NP
Pat

I�

I
will

VP

V
charm

NP
snakes

Floating quantifiers
1) All the students will take the exam.

2) The students will all take the exam.

• Back in the even older days, the
hypothesis was that there was a special
rule that turned the first sentence into
the second.

• The Quantifier Float rule would
move all over to the right, next to the
VP.

• all NP … VP → NP … all + VP

IP

NP
Pat

I�

I
will

VP

V
charm

NP
snakes

Only some quantifiers float
• Quantifiers: every, some, all, most, several,

many, both, four, …

1) Every student will take the exam.
2) *Student will every take the exam.
3) Several students will take the exam.
4) *Students will several take the exam.

• It works for both and all:

5) The students will both take the exam.
6) The students will all take the exam.

• What’s a difference between every, some,
several, many, and both, all?

IP

NP
Pat

I�

I
will

VP

V
charm

NP
snakes

Leaving all behind
• Upon further reflection, some enterprising

syntacticians hit upon the idea that rather
than floating all to its position next to VP,
all might instead have been “left behind” by
a subject that had moved.

• will [all [the students]] take the exam.

• [all [the students]]i will ti take the exam.

• [the students]i will [all ti] take the exam.

• And why would all the students have been
down there? Well, that would simplify
assignment of θ-roles.

IP

NP
Pat

I�

I
will

VP

V
charm

NP
snakes

The VP-Internal Subject
Hypothesis

• The verb (head of VP) can
assign θ-roles to other
things within the VP, which is
a natural explanation for
how the choice of verb
controls whether an Agent
θ-role is assigned or not.

• This idea became known as
the VP-Internal
Subject Hypothesis.

IP

NP
Pat

I�

I
will

VP

ti V�

V
charm

NP
snakes

The VP-Internal Subject
Hypothesis

• For us, we’ve supposed from
the beginning that assignment of
θ-roles is necessarily local. This
may not seem like a very
surprising hypothesis.

• But it was at the time a rather
unintuitive idea, and so various
people set out to see if some of
the predictions this makes are
borne out in the grammatical
data.

IP

NP
Pat

I�

I
will

VP

ti V�

V
charm

NP
snakes

The VP-Internal Subject
Hypothesis

• It turns out that as people
looked, there were reasons to
believe this.

• The new analysis of Quantifier
Float no longer relies on an
idiosyncratic rule of English,
but more general principles.

• The assignment of θ-roles can
now be more directly related
to the properties of the verb.

• And we can make sense of
there constructions in a more
straightforward way.

IP

NP
Pat

I�

I
will

VP

ti V�

V
charm

NP
snakes

Back to the present
• The basic components of the quantifier

“stranding” phenomenon are:

• All the students is a constituent. The students is an
NP inside all the students.

• [all [NP the students]]

• Either all the students or just the students can move
to SpecTP, to satisfy the [uN*] feature of T.

• So all the students and the students are both NPs.

• [NP all [NP the students]]

• So all is essentially a noun, but one that takes an
NP complement (all: [N, uN*, …]).

• We’re assuming here that all is not an adjunct, but in
fact a head, taking the NP as a complement. Why?

Quantifier

str
anding is

 sti
ll

often
 re

ferr
ed to

 as

“quantifier
float”

 to

this d
ay,

eve
n though

the n
am

e n
o longer

refl
ect

s th
e

analys
is.

NP

N
all

NP

the students

All the students will take...
• We start by building our vP.

• Merge the NP the exam and the V take (checks [uN*] on V)

• Merge v and VP (HoP)

• Move V to v (checks [uV*] on v)

• Merge the N all and the NP the students (checks [uN*] on all)

vP

NP v �

v+V
take

VP

< V > NP

the exam

N
all

NP

the students

All the students will take...
• We Merge the M will with vP (HoP)

• This values [uInfl:] on v as [uInfl:M].

MP

M
will

vP

NP v �

v+V
take

VP

< V > NP

the exam

N
all

NP

the students

All the students will take...
• We Merge the T with MP (HoP)

• This values [uInfl:] on M as [uInfl:pres*] (strong).

T�

T
[tns:pres, uN*]

MP

M
will

vP

NP v �

v+V
take

VP

< V > NP

the exam

N
all

NP

the students

All the students will take...
• We move M up to T

• This checks the strong [uInfl:pres*] on M.

T�

M+T
will

[uN*]

MP

< M > vP

NP v �

v+V
take

VP

< V > NP

the exam

N
all

NP

the students

T�

M+T
will

[uN*]

MP

< M > vP

NP v �

v+V
take

VP

< V > NP

the exam

N
all

NP

the students

All the students will take...
• Now, there are two possibilities:

a) Move the NP all the students.
b) Move the NP the students.

Is all the students closer
to T than the students is?

Not if we define “closer” as we did, in terms of c-
command.

Where X c-commands Y and Z, Y is closer to X than Z
is if Y c-commands

Z.

All the students will take...
TP

NP T�

M+T
will

[uN*]

MP

< M > vP

< NP > v �

v+V
take

VP

< V > NP

the exam

N
all

NP

the students

a) Move the NP all the students.

The students will all take...
b) Move the NP the students.

TP

NP

the students

T�

M+T
will

[uN*]

MP

< M > vP

NP v �

v+V
take

VP

< V > NP

the exam

N
all

< NP >

Expletive constructions

• An expletive is an element that can be in
subject position without having received a θ-
role from anywhere.

• It had been raining.

• There were fans rioting on Comm Ave.

Expletive constructions
1) There were fans rioting on Comm Ave.
2) Fans were rioting on Comm Ave.

TP

there T�

T+Prog
be

ProgP

< Prog > vP

NP
fans

v �

V+v
riot

< V >

TP

fans T�

T+Prog
be

ProgP

< Prog > vP

< NP > v �

V+v
riot

< V >

The Big Picture
• Now that we’ve gotten some idea of how the system

works, let’s back up a bit to remind ourselves a bit about
why we’re doing what we’re doing.

• People have (unconscious) knowledge of the grammar of
their native language (at least). They can judge whether
sentences are good examples of the language or not.

• Two questions:

• What is it that we know?

• How is it that we came to know what we know?

History

• In trying to model what we know (since it isn’t conscious
knowledge) some of the first attempts looked like the phrase
structure rules above (Chomsky 1957).

• An S can be rewritten as an NP, optionally an Aux, and a VP. An NP can
be rewritten as, optionally a determiner, optionally one or more
adjectives, and a noun. …

• What we know is that an S has an NP, a VP, and sometimes an Aux
between them, and that NPs can have a determiner, some number of
adjectives, and a noun.

Phrase Structure Rules
S → NP (Aux) VP
NP → (Det) (Adj+) N
Aux → (Tns) (Modal) (Perf) (Prog)
N → Pat, lunch, …
Tns → Past, Present
Perf → have -en

VP → V (NP) (PP)
PP → P NP
P → at, in, to, …
Modal → can, should, …
Prog → be -ing

History

! In this way, many sentences can be
derived, starting from S.

! The tree-style structure is a way to
record the history of the derivation
from S to the words in the
sentence.

! We model our knowledge of
English as a machine that (ideally,
when it’s finished) will generate all
of the sentences of English and no
others.

Phrase Structure Rules
S → NP (Aux) VP
NP → (Det) (Adj+) N
Aux → (Tns) (Modal) (Perf) (Prog)
N → Pat, lunch, …
Tns → Past, Present
Perf → have -en
VP → V (NP) (PP)
PP → P NP
P → at, in, to, …
Modal → can, should, …
Prog → be -ing

S

NP

N

Pat

Aux

Modal

might

VP

V

eat

NP

N

lunch

Affix Hopping

! If you build a
sentence this way,
things aren’t in the
right order, but
there’s a simple
transformation that
can be done to the
structure to get it
right.

! Empirically, tense,
perfect have, and
progressive be each
control the form of
the verbal element
to their right.

Phrase Structure Rules
S → NP (Aux) VP
NP → (Det) (Adj+) N
Aux → (Tns) (Modal) (Perf) (Prog)
N → Pat, lunch, …
Tns → Past, Present
Perf → have -en
VP → V (NP) (PP)
PP → P NP
P → at, in, to, …
Modal → can, should, …
Prog → be -ing

S

NP

N

Pat

Aux

Tns

Past

-ed

Perf

have -en

Prog

be -ing

VP

V

eat

NP

N

lunch

Affix Hopping
! Affix Hopping

SD: afx verb
SC: verb+afx

! The affixes all “hop to
the right” and attach to
the following word.

! An ancestor to the
kinds of movement
rules and of course the
Agree operation we’ve
been talking about.

Phrase Structure Rules
S → NP (Aux) VP
NP → (Det) (Adj+) N
Aux → (Tns) (Modal) (Perf) (Prog)
N → Pat, lunch, …
Tns → Past, Present
Perf → have -en
VP → V (NP) (PP)
PP → P NP
P → at, in, to, …
Modal → can, should, …
Prog → be -ing

S

NP

N

Pat

Aux

Tns

Past

Perf

have+-ed

Prog

be+-en

VP

V

eat+-ing

NP

N

lunch

History continues
• Through the 60s there were

good people working hard,
figuring out what kinds of
phrase structure rules and
transformations are needed
for a comprehensive
description on English.

• As things developed, two
things became clear:

• A lot of the PSRs look pretty
similar.

• There’s no way a kid acquiring
language can be learning these
rules.

! Chomsky (1970) proposed
that there actually is only a
limited set of phrase
structure rule types.

! For any categories X, Y, Z,
W, there are only rules like:
XP → YP X′
X′ → X′ WP
X′ → X ZP

X-bar theory
• If drawn out as a tree, you

may recognize the kind of
structures this proposal
entails. These are
structures based on the
“X-bar schema”.

• XP → YP X′
X′ → X′ WP
X′ → X ZP

• YP being the “specifier”, WP
being an “adjunct”, ZP being
the “complement”. Adjuncts
were considered to have a
slightly different configuration
then.

Why is this better? The types of
rules are much more constrained.

AND it also makes predictions
about structure and constituency

that turn out to be more accurate.

XP

YP X�

X� WP

X ZP

GB
• Around 1981, the view

shifted from thinking of the
system as constructing all
and only structures with
PSRs and transformations
to a view in which
structures and
transformations could apply
freely, but the grammatical
structures were those that
satisfied constraints on
(various stages of) the
representation.

! First, a “deep structure” (DS) tree is
built, however you like but
! Selectional restrictions must be satisfied
! θ-roles must be assigned
! Etc.

! Then, adjustments are made to get the
“surface structure” (SS)
! Things more or less like Affix Hopping, or

moving V to v, or moving the subject to
SpecTP.

! Further constraints are verified here: Is
there a subject in SpecTP? Etc.

! Finally, the result is assigned a
pronunciation (PF), and, possibly after
some further adjustments, an
interpretation (LF).

Why is this better? Most of the construction-specific rules were made
to follow from more general principles interacting. AND again, it

caused us to look for predictions, which were better met.

Which brings us to 1993
• The most recent change in

viewpoint was to the system
we’re working with now
(arising from the Minimalist
Program for Linguistic Theory).

• The constraints that applied to
the structures in GB were
getting to be rather esoteric
and numerous, to the extent
that it seemed we were missing
generalizations.

! The goal of MPLT was to “start over” in a
sense, to try to make the constraints follow
from some more natural assumptions that
we would need to make anyway.

! This new view has the computational
system working at a very basic level, forcing
structures to obey the constraints of GB by
enforcing them locally as we assemble the
structure from the bottom up.

Why is this better? It’s a further reduction to even more general
principles. The idea is that you need a few things to construct a

language-like system—and there’s nothing else.

Features and technology

• The use of features to drive the
system (uninterpretable features
force Merge, because if they are
not checked, the resulting
structure will be itself
uninterpretable) is a way to
encode the notion that lexical
items need other lexical items.

• What the system is designed to
do is assemble grammatical
structures where possible, given a
set of lexical items to start with.

! A comment about the technology
here:

! The operations of Merge, Adjoin,
Agree, and feature checking, the
idea that features can be
interpretable or not (or, strong or
weak) are all formalizations of
an underlying system, used so that
we can describe the system
precisely enough to
understand its predictions
about our language knowledge.

Features and the moon
• We can think of this initially as

the same kind of model as this:

• The Earth and the Moon don’t
compute this. But if we write it
this way, we can predict where
the Moon will be.

! Saying lexical items have
uninterpretable features that
need to be checked, and
hypothesizing mechanisms
(matching, valuing) by which they
might be checked is similarly a
way to formalize the behavior of
the computational system
underlying language in a way that
allows us deeper understanding
of the system and what it
predicts about language.

f = G
m1m2

r2

The “Minimalist Program”

• The analogy
with the
gravitational
force equation
isn’t quite
accurate, given
the underlying
philosophy of
the MP.

• The Minimalist
Program in fact
is trying to do
this:

! Suppose that we have a cognitive system for language,
which has to interact with at least two other cognitive
systems, the conceptual-intensional and the
articulatory-perceptual.

! Whatever it produces needs to be interpretable (in the
vernacular of) each of these cognitive systems for the
representation to be of any use.

! Suppose that the properties of these external systems are
your boundary conditions, your specifications.

! The hypothesis of the MPLT is that the computational
system underlying language is an optimal solution to those
design specifications. So everything is thought of in terms
of the creation of interpretable representations.

