
Previously...

Uniformity of Theta-
Assignment Hypothesis

• NP, daughter of vP = Agent

• NP, daughter of VP = Theme

• PP, daughter of V! = Goal

vP

NP
Pat

v �

v VP

NP
books

V�

V
gave

PP

P
to

NP
Chris

vP

NP
Pat

v �

v VP

V
called

NP
Chris

Unaccusatives
• The ice, the boat, the door, all Themes: NP daughter of VP.

• The ice melted.

• The boat sank.

• The door closed.

• Unaccusatives have a relatively
“inert” v, no “causal” meaning.

• There are two kinds of v, the causal one
that needs an NP (Agent), and a non-causal one.

• What if we pick the causal v (and provide an Agent NP)?

vP

v VP

V
melt

NP
the ice

Transitives

• Bill melted the ice.

• The causal v adds an Agent.

• Bill was the agent/instigator of a
melting that affected the ice.

vP

NP
Bill

v �

v VP

V
melt

NP
the ice

Unergatives
• Bill lied.

• That’s got an Agent, and
Agents must be NP
daughter of v.

• So, it would look like this.

vP

NP
Bill

v �

v VP
lie

Double object constructions

• Pat gave a book to Chris.

• Agent: Pat; Theme: a book; Goal: to Chris

• Pat gave Chris a book.

• Agent: Pat, Theme: ? a book?, Goal: ? Chris?

• Don’t these mean the same thing?

Pat gave Chris a book
• NP, daughter of vP = Agent

• NP, daughter of VP = Theme

• PP, daughter of V! = Goal

• The word order
suggests this structure.

• UTAH (so far) doesn’t
tell us what theta role
a book gets.

• And in what sense is Chris
a Theme of a going?

vP

NP
Pat

v �

v VP

NP
Chris

V�

V
go

“gave”

NP
a book

?

Two kinds of giving
• The two forms of give are not quite equivalent, though:

1) Pat gave a book to Chris.

2) Pat gave Chris a book.

3) *Pat gave a headache to Chris.

4) Pat gave Chris a headache.

• Try paraphrasing…

5) Pat sent a letter to Chicago.

6) *Pat sent Chicago a letter.

7) Pat taught French to the students.

8) Pat taught the students French.

To have
• NP, daughter of vP = Agent

• NP, daughter of VP = Theme

• PP, daughter of V! = Goal

• NP, daughter of V! = Possessee

vP

NP
Pat

v �

v VP

NP
Chris

V�

V
have

“gave”

NP
a book

vP

v VP

NP
Pat

V�

V
has

NP
a book

On beyond v
• Our trees have now expanded beyond being mere VPs

to being vPs.

• The Hierarchy of Projections: v > V
Once you have finished the VP (uninterpretable selection features
are checked), if there’s a v on the workbench, Merge it.

• The UTAH:

• NP, daughter of vP: Agent

• NP, daughter of VP: Theme

• PP, daughter of V!: Goal

• NP, daughter of V!: Possessee

• But this is only the beginning.

CAS LX 522
Syntax I

TP, Agree, and our quickly growing tree
(5.1-5.3)9

Auxiliaries and modals and verbs
• I ate.

• I could eat.

• I had eaten.

• I was eating.

• I had been eating.

• I could have eaten.

• I could be eating.

• I could have been
eating.

• So: could, have, be, eat.
How do we determine
what form each verb
takes?

Auxiliaries and modals and verbs

• Have: Perfective (aspect)

• I have eaten. I had eaten.

• Be: Progressive (aspect)

• I am eating. I was eating.

• Could: Modal

• I can eat. I could eat. I shall eat. I should eat. I
may eat. I might eat. I will eat. I would eat.

Auxiliaries and modals and verbs
• I could have

been eating.

• *I could be
having eaten.

• *I was canning
have eaten.

• *I had cannen
be eating.

• *I was having
cannen eat.

• *I had been
canning eat.

• It looks like
there’s an order:

• Modal, Perf,
Prog, verb.

Auxiliaries and modals and verbs
• Suppose:

• Have is of category Perf.

• Be is of category Prog.

• May, might, can, could are of category M.

• They are heads from the lexicon, we will Merge them
into the tree above vP. Their order is captured by a
new extended Hierarchy of Projections:

• Modal > Perf > Prog > v > V

• Except not every sentence has these. So:

• (Modal) > (Perf) > (Prog) > v > V

Negation
• Consider the following:

• I did not eat.

• I could not eat.

• I had not eaten.

• I was not eating.

• I had not been eating.

• I could not have been eating.

• Suppose not is of category Neg.

• How do we describe where not occurs? How can we
fit it into our Hierarchy of Projections?

Where does Neg fit?
• Suppose that we can fit Neg in our Hierarchy of

Projections. Just like the other things we just added.

• (Modal) > (Perf) > (Prog) > v > V

• Where would it go in the HoP, and how can we explain
the word order patterns?

• I could not have been eating.

• I had not been eating.

• I was not eating.

• I did not eat.

• Remember v and how we explained where the verb is
in Pat gave a book to Chris?

A-ha.
• Picture this:

• I ?+might not <might> have been eating.

• I ?+had not <had> been eating.

• I ?+was not <was> eating.

• So what is ?, then?

• He did not eat. He ate.

• He does not eat. He eats.

• All that do seems to be doing there is providing
an indication of…tense.

HoP revisited
• So, now we know where Neg goes. Above all the

other things, but below tense (category T).

• T > (Neg) > (M) > (Perf) > (Prog) > v > V

• Just as V moves to v, so do
Perf, Prog, and M move to T.

• If Neg is there, you can see it happen.

• They T+shall not <shall> be eating lunch.

• They T+shall <shall> be eating lunch.

What does do do?
• But what about when there’s just a verb and Neg,

but no M, Perf, or Prog?

• I ate lunch.

• I did not eat lunch.

• Eat clearly does not move to T.

• But not “gets in the way”, so tense cannot “see”
the verb. Instead, the meaningless verb do is
pronounced, to “support” tense. “Do-support”

• We will return to the details in due course…

So, we have T
• We’ve just added a category T, tense.

• The idea: The tense of a clause (past, present) is
the information that T brings to the structure.

• T has features like [T, past] or [T, pres]

• Or perhaps [T, past] or [T, nonpast].

• These features are interpretable on T. T is where
tense “lives.” We see reflections of these tense
features on verbs (give, gave, go, went) but they are
just reflections. Agreement. The interpretable
tense features don’t live on verbs, they live on T.

Pat might eat lunch.

We already know how this is
supposed to work, to a point.

Merge eat and lunch, checking the
uN feature of eat (and assigning a θ-
role to lunch, namely Theme—this is
NP daughter of VP).

V
eat

[V, uN, . . .]

NP
lunch

[N, . . .]

workbench

v [v, uN, …]

eat [V, uN, …] lunch [N, …]

might [M, …] T [T, past]

Pat [N, …]

workbench

Pat might eat lunch.

We already know how this is
supposed to work, to a point.

Merge eat and lunch, checking the
uN feature of eat (and assigning a θ-
role to lunch, namely Theme—this is
NP daughter of VP).

VP

V
eat

[V, uN, . . .]

NP
lunch

[N, . . .]

v [v, uN, …]
VP [V, ...]

might [M, …] T [T, past]

Pat [N, …]

Pat might eat lunch.

We already know how this is
supposed to work, to a point.

Merge eat and lunch, checking the
uN feature of eat (and assigning a θ-
role to lunch, namely Theme—this is
NP daughter of VP).

VP [V, . . .]

V
eat

NP
lunch

workbench

v [v, uN, …]

might [M, …] T [T, past]

Pat [N, …]
VP [V, ...]

Pat might eat lunch.

Merge v and the VP eat lunch,
in conformance with the
Hierarchy of Projections. v
projects, and still has a uN
feature.

v
[v, uN, . . .]

VP [V, . . .]

V
eat

NP
lunch

workbench

v [v, uN, …]

might [M, …] T [T, past]

Pat [N, …]
VP [V, ...]

Pat might eat lunch.

vP

v
[v, uN, . . .]

VP

V
eat

NP
lunch

workbench
vP [v, uN, …]

might [M, …] T [T, past]

Pat [N, …]

Merge v and the VP eat lunch,
in conformance with the
Hierarchy of Projections. v
projects, and still has a uN
feature.

Pat might eat lunch.

vP [v, uN, . . .]

v VP

V
eat

NP
lunch

workbench
might [M, …] T [T, past]

Pat [N, …]
vP [v, uN, …]

Merge v and the VP eat lunch,
in conformance with the
Hierarchy of Projections. v
projects, and still has a uN
feature.

Pat might eat lunch.

Move the V eat up to v.

vP [v, uN, . . .]

v+V
eat

VP

< eat > NP
lunch

workbench
might [M, …] T [T, past]

Pat [N, …]
vP [v, uN, …]

Pat might eat lunch.

NP
Pat

[N, . . .]

vP [v, uN, . . .]

v+V
eat

VP

< eat > NP
lunch

workbench
might [M, …] T [T, past]

Pat [N, …]
vP [v, uN, …]

Merge Pat with vʹ to check
the uN feature and assign a
θ-role (Agent, this is NP
daughter of vP).

Pat might eat lunch.

Merge Pat with vʹ to check
the uN feature and assign a
θ-role (Agent, this is NP
daughter of vP).

vP

NP
Pat

[N, . . .]

v � [v, uN, . . .]

v+V
eat

VP

< eat > NP
lunch

workbench
might [M, …] T [T, past]

vP [v, …]

Pat might eat lunch.

So, now what do we do
with might?

1) And eat lunch Pat shall.

2) What Pat should do is eat
lunch.

It kind of seems like it goes
between the subject and
the verb, but how?

vP

NP
Pat

[N, . . .]

v � [v, uN, . . .]

v+V
eat

VP

< eat > NP
lunch

workbench
might [M, …] T [T, past]

vP [v, …]

Pat might eat lunch.

If we leave everything as
it is so far (UTAH,
Hierarchy of
Projections), the only
option is to Merge might
with the vP we just built.

So, let’s.

M
might

[M, . . .]

vP [v, . . .]

NP
Pat

v �

v+V
eat

VP

< eat > NP
lunch

workbench
might [M, …] T [T, past]

vP [v, …]

workbench
T [T, past]

MP [M, …]

Pat might eat lunch.

• Now, we have one more
thing on our workbench
(T) and the HoP says that
once we finish with M,
we Merge it with T.

• And so Merge T, we shall.

MP

M
might

vP

NP
Pat

v �

v+V
eat

VP

< eat > NP
lunch

Pat might eat lunch.

Then, M moves up to T.

Why? Because M, Perf, and
Prog all move up to T. For
the same kind of reason
that V moves up to v.

Right now we have no way
to describe this in our
system, except with this
“rule from the outside” that
stipulates that V moves to v,
and {M/Perf/Prog} moves to
T.

TP

T
[past]

MP

M
might

vP

NP
Pat

v �

v+V
eat

VP

< eat > NP
lunch

Pat might eat lunch.

Ok, that’s all fine and
good, except that
the sentence is
Pat might eat lunch
not
Might Pat eat lunch

How do we get Pat
might eat lunch out
of this?

TP

T+M
might

MP

< might > vP

NP
Pat

v �

v+V
eat

VP

< eat > NP
lunch

Pat might eat lunch.

As previewed earlier,
the subject moves to
this first position in
the sentence, around
the modal.

“Moving” Pat here means
Merging a copy…

TP

NP
Pat

T�

T+M
might

MP

< might > vP

< Pat > v �

v+V
eat

VP

< eat > NP
lunch

Pat might eat lunch.

Great. Why?

Jumping ahead, we’re
going to say that this
is a property of T-
type things generally:
T needs to have an
NP in its specifier.

We can encode this as a
(special type of)
uninterpretable feature on
T: [uN*]. More on that
later.

TP

NP
Pat

T�

T+M
might

MP

< might > vP

< Pat > v �

v+V
eat

VP

< eat > NP
lunch

☞⚠ WARNING ⚠☜

• What we’ve done here is not quite the same as
what is in the textbook. (But it’s better).

• In the textbook, modals are not treated as
their own category, but rather as a kind of T.

• The revision we made here will pay off soon.
Keep this difference in mind as you review the
textbook on this point. You will see no MPs in
the book. But you should see them on the
homeworks/tests you turn in.

WARNING

Side note: “I” vs. “T”
• You may have heard in the past that it tense should

be of category I (for Inflection), rather than T (For
Tense).

• Rest easy: T and I are (for current purposes) just
two names for the same thing.

• Historically, this was called INFL, then I, and
now usually called T. But these are just names. I
vs. T, Istanbul vs. Constantinople; St. Petersburg
vs. Leningrad.

Pat ate lunch
• Now that we have T in the Hierarchy of

Projections, we’re stuck with it.

• Yet, where is T in Pat ate lunch or Pat eats lunch?

• It looks like the tense marking is on the verb, we
don’t see anything between the subject and the verb
where T ought to be.

• Now that we have T, this is where tense features
belong. We take this to be the thing that determines
the tense of the sentence, even if we sometimes
see the marking on the verb.

Pat ate lunch

• Since (most) verbs sound different when in the
past and in the present tense, we suppose that
there is a [past] or [present] feature on the
verb.

• However, to reiterate: tense belongs on T.

• The tense features on the verbs are
uninterpretable.

Feature classes
• There are tense features. Like past, like present.

There are case features. Like nom, like acc. There are
person features. Like 1st, like 2nd. There are
gender features. Like masculine, like feminine.

• So, we can think of this as a feature category or
feature type that has a value.

[Gender: masculine]!! ! [Person: 1st]

[Tense: past]! ! ! ! ! [Case: nom]

Agree
• T nodes have features of the tense type. Maybe

past, maybe present.

• Suppose that v has an uninterpretable feature of
the tense type, but unvalued.

• What we’re trying to model here is agreement.

Agree
In the configuration X[F: val] … Y[uF:]
F checks and values uF, resulting in
X[F: val] … Y[uF: val].

Unvalued features
• The idea is that a lexical item might have an unvalued

feature, which is uninterpretable as it stands and needs
to be given a value in order to be interpretable.

• The statement of Agree on the previous slide is
essentially saying just that, formally.

• This gives us two kinds of uninterpretable
features (unvalued and regular-old uninterpretable
features), and two ways to check them (valuing for
unvalued features, checking under sisterhood for the
other kind).

• Unvalued [uF:]. Regular-old [uF].

To be continued...

(Actually, it’s unlikely we’ll get to here anyway,
so I suppose it will be continued immediately

after you actually see the previous slide,
next time.)

