CAS LX 522
Syntax I

V2, and wh-movement
(8.4, 9.1-9.3)

7 1

Analyzing V2

How can we account for this?
- Assume that in German, most things are very similar to English:
 The UTAH is the same (Agents in SpecVP, etc.)
 The EPP is the same (T has a [uDP*] feature; there needs to be a DP in SpecTP)
- Things to remember:
 French/Irish and English differ in whether v moves to T.
 Irish and French/English differ in whether the subject moves to SpecTP.
 In English yes-no questions (but not in declaratives), T moves to C.

CP

The thread here (chapter 8) is motivating and making use of the CP level of our structure:
C is the home of the [clause-type:…] feature, differentiating interrogatives and declaratives.
C is sometimes available to check case on the subject when it can’t be checked the higher verb (ECM) or finite T:
- I want [Ø [PRO to see more syntax]]
- I intended [for her to win the lottery]
We’ll see more for CP as we explore question formation—but first, we’ll see it at work in German...

English Yes-No Question

In a YNQ, the [Q] feature of C matches and values the [uclause-type:] feature of T as strong ([Q*]).
- T moves up to adjoin to C, checking the feature.

V2 languages

There are a number of languages that are classified as “verb second” or “V2” languages. They are so called because in general the (tensed) verb must be second, after the first major constituent in the sentence.
De man heeft een boek gezien gisteren.
the man has a book seen yesterday
‘the man has seen a book yesterday.’

een boek heeft de man gezien gisteren.
gisteren heeft de man een boek gezien.
‘The children have seen this film.
Die Kinder haben diesen Film gesehen.
‘The children have seen this film.’

Analyzing V2

Since the finite verb is sometimes to the left of the subject:
- Diesen Roman las ich schon letztes Jahr
 this book read I already last year
 ‘I read this book already last year’
- Just like it is in English YNQs:
 Will I get an A?

We can suppose that German and English differ in that when C values the [uclause-type:] feature of T, it is always strong.
- In fact, more natural sounding than what we have to say in English: When C values [uclause-type:] as [Q] (but not [Decl]) it’s strong.
Topics

The constituent that appears first in a V2 clause is generally considered to be a topic. Suppose that C has a "topic" feature \([\text{top}^*] \) and whatever is the topic of the sentence (be it an adverb, the subject, the object) is also marked with an (interpretable) [top] feature. Then this will work just like the EPP, essentially.

V2 languages

The basic idea we’ll be pursuing with respect to V2 languages is this:

- To get the tensed verb higher than the subject (which is sometimes is), we move the verb to T, and then T (with the verb) to C.
- To put C into "second position", we move some phrase into SpecCP.
- The "first phrase" in V2 languages is generally interpreted as the topic of the sentences. So, we say that the topic (whatever it is going to be) has a feature that marks it as such: An interpretable [top] feature.

Reminder: T, v, and (uInfl:)

The way our system works (movement happens in order to check strong uninterpretable features), we implement this as follows:

- Because the verb moves to T, we need there to be a strong feature checked between T and v.
- This is common cross-linguistically. Recall French where the highest verbal head (the v, or an auxiliary) moves to T.
- This explained why verbs always precede adverbs and negation in French.
- Since the [tense] feature of T values the [uInfl] feature of the highest verbal head, we say that in French, when [tense] values [uInfl], the feature is strong.

Reminder: v to T

So, v starts out with a [uInfl] feature.

- v **always** starts out with a [uInfl] feature.
- We Merge T, and the [tense] feature (e.g., [past] = [tense:past]) matches and values the [uInfl] feature.
- What differentiates French and English is that when [tense] values [uInfl], the valued [uInfl] feature is strong.
- In English, it is not strong except in one case: if the [uInfl] feature is one an auxiliary (Perf, Prog, Pass), then a [uInfl] feature valued by [tense] is strong.
- Auxiliaries precede negation and adverbs, main verbs do not.

Reminder: Strong features

Strong features are uninterpretable features that can be checked only when local to (a sister of) the feature that checks them.

- Strong features very often = something must move.
- A feature gets to be strong in one of two ways:
 - An inherently strong feature of the lexical item.
 - v has a strong [uV] feature.
 - T has a strong [uD] feature.
 - A feature that becomes strong when valued.
 - Prog has a weak [uInfl] feature. When valued by [tense], it becomes strong. (In English, Aux moves so T: I am not eating green eggs & ham)
 - T has a weak [uclause-type] feature. When valued by [clause-type:Q], it becomes strong. (In English, T moves so C in questions: Would you eat them on a train?)

V2 languages

- To account for the fact that v moves to T and then T moves to C in German: a feature that C values on T is valued as strong.
- [uclause-type] is a perfect candidate.
- So, when [uclause-type] is valued by C in German, it is valued as strong, and so T moves to C.
V2 languages

- To account for the fact that v moves to T and then T moves to C in German, a feature that C values on T is valued as strong.
- [clause-type] is a perfect candidate.
- So, when [clause-type] is valued by C in German, it is valued as strong, and so T moves to C.

V2 languages

- To account for the fact that the topic moves into SpecCP, we say that C has a [\text{uTop}^*] feature. Whatever is the topic in the sentence will have a feature designating that [\text{top}].
- Just like the EPP feature ([\text{uD}^*]) of T forces the subject into SpecTP, the [\text{uTop}^*] feature of C will force movement of the topic into SpecCP.

V2...step 1

- V moves to v.
- Perf moves to T.
- T moves to C.
- Subject moves to SpecTP.

V2...step 2a

- The object is marked as topic.
- C has a [\text{uTop}^*] feature.

V2...step 2b

- The object moves up to SpecTP.
- The tensed verb is now in second position.
Embedded clauses

- Will John arrive late?
- T moves to C in English questions.
- \[\text{[clause-type]}\] on T is strong when valued by \([Q]\) on C.
- I wonder \([\text{if}\] if John will arrive late\).
- T does not move to C in embedded questions.
- Perhaps because C is “filled” already (by if).
- Intuition: We need to be able to tell when C is \([Q]\)— if nothing is pronounced there, we move T there to signal that C is \([Q]\).
- Er sagte \([\text{CP}\] dass ich schon letztes Jahr diesen Roman las \).
 He said that I already last year this book read
 ‘He said that I read this book already last year.’
- If C is filled in German (\[dass\]), T does not move to C.
- Also notice that when T does not move to C, the verb is at the end.
- German appears to be a head-final language.

Interlude: what we’re doing

Remember, what we’re doing is trying to describe our knowledge of language.
- We believe that the intricacies of human language are actually too complicated to learn, that we’re in fact describing a kind of system that is genetically “built-in”, sort of like our vision system.
- If that’s the case, the same system must underlie all human languages, and the differences must be relatively minor.
- We’re identifying a few “parameters of variation”—ways in which human languages can differ.

Types of sentences

Sentences come in several types: We’ve mainly seen declarative clauses.
- Horton heard a Who.
 But there are also questions (interrogative clauses)…
- Did Horton hear a Who?
 Who did Horton hear? …exclamatives…
- What a crazy elephant!
 …imperatives…
- Pass me the salt.

Wh-questions

Wh-questions are “information-seeking” questions, involving a wh-word.
- Who, what, when, where, why, HoW, which

- What will they bake?

Observe that what is basically the object of bake. And look how far away it is from bake, the thing that assigns it a \(\theta\)-role.
Cf also “echo questions”: I drank WHAT?
Also, notice that T has moved to C here too (like it does in yes-no questions).

[wh]

Wh-words are a little bit like pronouns, standing in for whatever category of thing we’d like information about.
These interrogative expressions are different from non-interrogative pronouns and demonstratives.
- "That will they bake.
 What, where, when are differentiated from that, there, then in being interrogative. This is a feature of the wh-word: [wh].
A wh-word has the same category as its non-wh-counterpart—therefore, wh-words come in several different categories.

- What [wh, D]
- Who [wh, D, human]
- When [wh, Adv, temporal]
- Where [wh, Adv, locational]
- How [wh, Adv, manner]
- Why [wh, Adv, reason]
- Which [wh, D]

How are wh-questions formed?

What we have in English wh-questions is like a limited form of V2.

The analysis of wh-questions is the same:

- The T head moves to C
- The wh-expression moves to SpecCP

Let’s suppose that the reason/mechanism moving T to C is the same as in yes-no questions: We have an interrogative C, with [clause-type:Q]. When the [uclause-type] feature of T is valued by [Q], it is strong.

What will they bake?

The complementizer C has the information about clause-type, and this is a question. As before with yes-no questions, we assume that this C has the feature [clause-type:Q] (or “[Q]” for short).

As with yes-no questions, the [uclause-type] feature of T is strong when valued by Q.

What will they bake?

As for how what winds up at the beginning of the sentence, we will treat this essentially like we treated German V2.

In a wh-question, C has a [uwh*] feature.

This forces what to move into SpecCP to check the feature.

What will they bake?

T will move to check the (now strong) [uclause-type:Q*] feature. What moves to SpecCP and checks the [uwh*] feature of C.
What will they bake?

T will move to check the (now strong) \(u\) clause-type:Q* feature. What moves to SpecCP and checks the \([\text{uwh}^*]\) feature of C.

Interrogative Q vs. Declarative Q

Looking at wh-questions as compared to yes-no questions, it looks as if there are two kinds of interrogative C:

- "yes-no" C: \([C, \text{clause-type:Q}]\)
- wh-question C: \([C, \text{clause-type:Q, uwh}^*]\)

This is in fact often supposed in the syntax literature—and many languages seem to have a special particle reserved for yes-no questions (e.g., English if, Mandarin ma)

Adger notes a problem, however:
Nothing in our system so far prevents us from using a yes-no C with a wh-word, predicting:
* Will they bake what?

Op

Accordingly, Adger proposes that there's a wh-word even in "yes-no questions".

* There are actually other reasons to think this as well, but we'll get to them later.

That is Will they bake cookies? is actually something pretty close to:
Whether will they bake cookies?
except with a “silent” whether, called Op.

Will they bake pie?

Op appears in yes-no questions in the same place that wh-words do in wh-questions (and we assume it has a \([\text{wh}]\) feature as well). Op is probably like a "silent" whether (whether).

Summary so far

In wh-questions such as What did they bake?

What is like a pronoun, standing in for the theme.

Wh-words are differentiated by having a \([\text{wh}]\) feature.

The structure of a wh-question is like a V2 clause:

* T moves to C:
 * The \([\text{uclause-type:}]\) feature of T is strong when valued as Q.
 * The wh-word moves to SpecCP:
 * The interrogative C has a strong uninterpretable \([\text{uwh}^*]\) feature.