CAS LX 422/
GRS LX 722
Intermediate Syntax

TP, Agree, and our quickly growing tree
(5.1-5.3)

Auxiliaries and modals and
verbs

| ate.
| could eat.
| had eaten.
I was eating. So: could, have, be, eat.
) How do we determine
| had been eating. what form each verb
takes?

| could have eaten.
| could be eating.

| could have been
eating.

Auxiliaries ang wmodals and
verbs

Have: Perfective (aspect)

| have eaten. | had eaten.
Be: Progressive (aspect)

| am eating. | was eating.
Could: Modal

| can eat. | could eat. | shall eat. | should eat. |
may eat. | might eat. | will eat. | would eat.

Auxiliaries ang wmodals and
verbs

| could have * was having
been eating. cannen eat.

*| could be *| had been
having eaten. canning eat.

*| was canning It looks like
have eaten. there’s an order:
* had cannen Modal, Perf,
be eating. Prog, verb.

Auxiliaries and modals and
verbs

Suppose:
Have is of category Perf.
Be is of category Prog.
May, might, can, could are of category M.

They are heads from the lexicon, we will Merge them
into the tree above vP.Their order is captured by a
new extended Hierarchy of Projections:

Modal > Perf > Prog > v >V
Except not every sentence has these. So:

(Modal) > (Perf) > (Prog) > v >V

Negation

Consider the following:
| did not eat.
| could not eat.

| had not eaten.

| was not eating.

| had not been eating.

| could not have been eating.
Suppose not is of category Neg.

How do we describe where not occurs? How can we
fit it into our Hierarchy of Projections?

Where does Neg fit?

Suppose that we can fit Neg in our Hierarchy of
Projections. Just like the other things we just added.

(Modal) > (Perf) > (Prog) > v >V

Where would it go in the HoP, and how can we explain
the word order patterns?

| could not have been eating.
| had not been eating.
| was not eating.

| did not eat.

Remember v and how we explained where the verb is
in Pat gave a book to Chris?

A-ha.

Picture this:
I 2+might not <might> have been eating.
| 2+had not <had> been eating.
| 24+was not <was> eating.
So what is ?, then?
He did not eat. He ate.
He does not eat. He eats.

All that do seems to be doing there is providing
an indication of...tense.

HoP revisited

So, now we know where Neg goes. Above all the
other things, but below tense (category T).

T > (Neg) > (M) > (Perf) > (Prog) > v >V

Just asV moves to v, so do
Perf, Prog,and M move to T.

If Neg is there, you can see it happen.
They T+shall not <shall> be eating lunch.
They T+shall <shall> be eating lunch.

What does do do?

But what about when there’s just a verb and Neg,
but no M, Perf, or Prog?

| ate lunch.
| did not eat lunch.

Eat clearly does not move to T.

But not “gets in the way”, so tense cannot “see”
the verb. Instead, the meaningless verb do is
pronounced, to “support” tense.“Do-support”

We will return to the details in due course...

So, we have T

We've just added a category T, tense.

The idea: The tense of a clause (past, present) is
the information that T brings to the structure.

T has features like [T, past] or [T, pres]
Or perhaps [T, past] or [T, nonpast].

These features are interpretable on T.T is where
tense “lives.” We see reflections of these tense
features on verbs (give, gave, go, went) but they are
just reflections. Agreement. The interpretable
tense features don’t live on verbs, they live onT.

They wmight eat it.

they [D,...] v[vuD,...]
eat [V,ub,...] it[D,...]

workbench

might [M, ...] T[T, past]

\Y DP
We already know how this is cat it
supposed to work, to a point. v D l D
L wb, L R

Merge eat and it, checking the uD
feature of eat (and assigning a 6-role
to it, namely Theme—this is DP
daughter of VP).

They wmight eat if.

Merge eat and it, checking the uD
feature of eat (and assigning a 0-role
to it, namely Theme—this is DP

they [D,...] v[wuD,...]
VPV, ..]
workbench
might [M,...] T [T, past]
VP
/\
DP
We already know how this is Vt o
supposed to work, to a point. v eg] D !
, b, L Y e

They wmight eat it.

they [D,...] v[wuD,...]
VPV, ..]
workbench

might [M, ...] T[T, past]

VP [V,
/\
We already know how this is N DP
supposed to work, to a point. eat it

Merge eat and it, checking the uD
feature of eat (and assigning a 0-role

to it, namely Theme—this is DP
daughter of VP). daughter of VP).
s s s s
They might eat it. They wmight eat it.
they [D,...] v[vuD,...] they [D, ...]
VPV, ..] vP [v,uD, ...]
workbench workbench
might [M,...] T [T, past] might [M,...] T [T, past]
uP
/\
v VP [V v VP
[v, uD, ...] N [v,uD, ...] "
Merge v and the VP eat it, in \Y% DP Merge v and the VP eat it, in \Y DP
conformance with the eat it conformance with the eat it
Hierarchy of Projections. v

projects, and still has a uD

Hierarchy of Projections. v

projects, and still has a uD
feature. feature.
They wight eat it. They wmight eaf it.
they [D.] VP [v,uD, ...] they [, -] VP [v,uD, ...]
workbench workbench

might [M, ...] T[T, past]

/\
v VP
Merge v and the VP eat it, in /\

conformance with the J
Hierarchy of Projections. v eat 7
projects, and still has a uD

feature.

might [M, ...] T[T, past]

/\
v+V VP

eat /\

beat > DP

it
Move theV eat up to v.

vP [v, uD, ...

They wmight eat if.

they [D, ...
al] VP [v,ub, ...]
workbench
might [M,...] T [T, past]
DP vP o, uD, ...]
they N
D,...] v4v VP
eat /\
beat > DP
Merge they with v’ to it

check the uD feature and
assign a 0-role (Agent, this
is DP daughter of vP).

They wmight eat it.

workbench vP

might [M, ...] T[T, past] o~

DP o' v, 4D,]
Wiy, ...] they N
D,...] w4V VP

eat /\

beat > DP

it

Merge they with v’ to
check the uD feature and
assign a 0-role (Agent, this
is DP daughter of vP).

They might eat if.

They wmight eat it.

VP [v,...]
workbench oP
might [M,...] T[T, past] o
DP v o, #D, L]
th
So, now what do we do D ey] PN
with might? »ol vV \U%
at
And eat it they shall. e /\
beat > DP
What they should do is eat it

it.

It kind of seems like it goes
between the subject and
the verb. but how?

VP [v,...]
workbench
might [M,...] T[T, past
ght [I Tpast] M vP [v, ...]
might PN
" M,...] DP v’
If we leave everything as the
it is so far (UTAH, ey TN
Hierarchy of vtV VP
Projections), the only eat TN
option is to Merge might beat > DP
with the vP we just built. it

So, let’s.

They wmight eat if.

workbench MP
T[T, past] N
M vP
might "
MP M, ...] DP o
th/ey /\

Now, we have one more vV VP
thing on our workbench
(T) and the HoP says that eat N
once we finish with M, we &ieat > DP
Merge it with T. it

And so Merge T, we shall.

They wmight eat it.

TP
T MP
Then,M moves up to T.
P past] _—~_
Why? Because M, Perf, and M P
Prog all move up to T. For .
the same kind of reason mlght /\
thatV moves up to v. DP o'
Right now we have no way the
to describe this in our y /\

system, except with this v+V vp

“rule from the outside” that eat

stipulates thatV moves to v, /\
and {M/Perf/Prog} moves to be&t > DP
'|" .

it

They wmight eat if.

Ok, that’s all fine and
good, except that
the sentence is

They might eat it

not

Might they eat it

How do we get They
might eat it out of
this?

TP
/\
T+M MP
might "

Q/might > P

/\
DP v’
they /\
v+V VP

eat /\

ueat > DP
it

They might eat it.

/\
DP T
they "
ﬁ\]s pret;{iev:ed earliter, T+M MP
e subject moves to ;
this first position in might /\
the sentence, around @nght > P

the modal.

N

< they > v

“Moving” they here means
Merging a copy... v+V VP

eat /\

beat > DP
it

They might eat it.

Great.Why?

Jumping ahead, we're
going to say that this
is a property of T-
type things generally:
T needs to have a
DP in its specifier.

We can encode this as a

N

DP T’

T+M MP

might /\

@Li{]ht > 0P
/\

< they > v

(special type of)

uninterpretable feature on
T: [uD*]. More on that vV VP
shortly. eat /\

beat > DP
it

They ate it

Now that we have T in the Hierarchy of Projections,
we're stuck with it.

Yet, where is T in They ate it or They eat it?

It looks like the tense marking is on the verb, we
don’t see anything between the subject and the verb
where T ought to be.

Now that we have T, this is where tense features
belong.We take this to be the thing that determines
the tense of the sentence, even if we sometimes
see the marking on the verb.

They ate it

Since (most) verbs sound different when in the
past and in the present tense, we suppose that
there is a [past] or [present] feature on the
verb.

However, to reiterate: fense belongs on T.

The tense features on the verbs are
uninterpretable.

Feature classes

There are tense features. Like past, like present.
There are case features. Like nom, like acc.There are
person features. Like Ist, like 2nd.There are
gender features. Like masculine, like feminine.

So, we can think of this as a feature category or

feature type that has a value.
[Gender: masculine] [Person: Ist]

[Tense: past] [Case: nom]

Agree

T nodes have features of the tense type. Maybe past,
maybe present.

Suppose that Vv has an uninterpretable feature of
the tense type, but unvalued.

What we're trying to model here is agreement.

Agree

In the configuration X[F:val] ... Y[uF:]
F checks and values uF, resulting in
X[F:val] ... Y[uF: val].

Unvalued features

The idea is that a lexical item might have an unvalued
feature, which is uninterpretable as it stands and needs
to be given a value in order to be interpretable.

The statement of Agree on the previous slide is
essentially saying just that, formally.

This gives us two kinds of uninterpretable
features (unvalued and regular-old uninterpretable
features), and two ways to check them (valuing for
unvalued features, checking under sisterhood for the
other kind).

Unvalued [uF:]. Regular-old [uF].

Inflecting verbs

Returning now to the question of how the
verb comes to look the way it does.

Pat ate lunch.

Pat eats lunch.

Pat has eaten lunch.
Pat was eating lunch.

Pat might have been eating lunch.

Affix hopping

Each auxiliary seems to control the form of
the form that follows it.We can include T in
this generalization as well.

Pat|(T)|eat| [Pat|(T)|have |eat
s s|en

Pat|(T)| be | eat| |Pat|(T)|have|be | eat

s | ing s|en |ing

might have been eating

TP

Now, look at how DP/\T’
these appear in the they
tree. T+M MP
Basically, certain might
things (T, M, Perf, @niqht > PerfP
Prog) assign a verbal N
form to the next Perf ProgP
thing (M, Perf, Prog, v) have
down. P;og /wP\

€

This is a little bit like < they > '

the assignment of PN
reference through v+V VP
binding. eat N
Qiea,t > DP
it

might have been eating

TP
The way we’ll model DP T
this is by supposing they "
that certain forms T+M MP
take endings. might "
Inflectional endings. @,j!]h,t > PerfP
Like en, ing, s, etc. P

Specifically, suppose Perf = ProgP

7 ! have

that the inflectional P /\P
ding is rog v

ending e~

represented by an
inflectional feature,
like [Infl: Perf], or

vtV VP
[Infl: Prog], or cat

- P
[Infl: Past]. <eat> DP
(e o)

< they >

might have been eating

TP

The form comes
out of the lexicon DP/\T’
without a specific thes

. hey
ending, though— T+mp
what ending it gets migh
X . ght
is determined dafter Q/mith > PerfP
it is Merged into i P

the tree, by the

N Perf ProgP
next thing up. have -~
That is: whether eat ong vP
comes out as eats e TN

H /
or eaten or eating < they > v

depends on /\7
whether the next v+V VP
eat /\

thing Merged is T,
Perf, or Prog.

ueat > DP
it

might have been eating

So, at the point
where, say, Prog is TN
first Merged into the
structure, its

Inflectional feature is :J:]I\J MP
unvalued. ght N
@nghl > PerfP
It will be valued by N
the next thing Perf ProgP
Merged. have N
Prog vP

We will also assume
that an unvalued

inflectional feature is
uninterpretable. It vV VP

must be fixed. eat N

[ulnfl:] ((<eat> by

be /\

< they > v

Agree & unvalued features

Agree

In the configuration
X[F:val] ... Y[uF:]

F checks and
values uF, resulting in
X[F:val] ... Y[uF: val].
This gives us two kinds of uninterpretable
features (unvalued and regular-old uninterpretable

features), and two ways to check them (valuing for
unvalued features, checking under sisterhood for

the other kind).
Unvalued [uF:]. Regular-old [uF].

The idea is that a lexical item
might have an unvalued feature,
which is uninterpretable as it
stands and needs to be given

a value in order to be
interpretable.

So, v has a [ulnfl:]

feature. vP
/\
v VP
[v, uD, ulnfl:] N
\% DP
eat it

past + eat_?

If T is Merged next,
it will determine
the inflection that
will go on the verb.

If T is [past], then - T vP
the verb will [T, past, ...] "~
become ate. DP v’
they __— —
v+V VP
So, T values the eat N

(v, ulnfl: | D, ...] < eat> DP

[ulnfl:] feature of v. .
[2s

As [past], or [pres].

ate

Now, Infl is valued
(and is no longer
uninterpretable).

Pronunciation:
T is not pronounced,

Let’s suppose that TP v+V is pronounced as
everything that has T |ate (past form of eat)
an inflectional ending T vP

of this sort has a [T, past, ...] "~

[ulnfl:] feature, then. DP v

That is: Prog, Perf, M, they _—""—

and v all have a ”:(:y vp
ulnfl:] feature. X
[] [v, wlaflpast, 4B, ...] < et > DP

AndT, M, Prog, and v it
Perf can value that
feature.

have_7 * eaten

Agree:
Perf values the
[ulnfl:] feature of v.

PerfP
/\
Perf vP
have T
[Perf, uInfl: | DP o'
they _— ——u
v+V VP
eat N
(v, #ff:Perf, «D, ...] < ct> DP

it

had + eaten

Agree:
TP feature ot pert
/\
T PerfP
[T, past, .. } /\
Perf vP
have
[Perf, #Infl:past] pPpP N
they _— ——_
v+V VP
eat /\
[v, wnfl:Perf, 4B, ...] < ¢eqt> DP

it

What has Lulnfl:], what can
value Lulnfl:]

Things of these categories have [ulnfl:] features:
v, M, Perf, Prog

[ulnfl:] features can be valued (via Agree) by:
Tense features (past, present) of T. -s or -ed.
Perf feature of Perf. -en.

Prog feature of Prog. -ing.
M feature of M.-O (silent)

Pat [past] ha-d be-en eat-ing lunch.

The basic operations

Take some lexical items (a “numeration” or “lexical array”)
Combine any two of them (Merge) to make a new item.

Lexical items can have uninterpretable features. Merge can
check these features. All of the uninterpretable features must
be checked by the end of the derivation.

Attach one to another (Adjoin).
Adjoin does not check features.

Move stuff around.

What can you do? What can’t you do? Does it check
features? Why do you do it? What's really happening?

Move

There are two basic kinds of movement.We've seen
examples of each.

One is head-movement, where a head moves up
to join with another head.

Examples:V moves to v, {Perf/Prog/M} moves to T

The other is XP-movement, where a maximal
projection (an XP) moves up to a specifier of a higher
phrase.

Example: The subject moving to SpecTP.

Solving a problem via movewment

We will assume that, like with Merge, Move occurs to “solve
a problem.” And the main problem our system has is
unchecked uninterpretable features. So, Move must check
features.

We have two ways to check features so far. One of them is
under sisterhood (Merge).The other is “at a
distance” (Agree).

What kind of problem could Move solve?! Well, for one
thing, it must not be able to solve the problem in place,
without moving. Seems to need “closeness.”

Two existing means of
checking features

P has a [uD] feature. Merge it c-selection

with an D(P), and the [uD] I X[F] and Y[uF] are

feature of P is checked. sisters, the uF feature
of Y is checked:
Y[uE].

T has a [tense:past] feature.

Strictly speaking [tense:past] inflection™

doesn’t look like it’s a valued If X[F] c-commands

[Infl] feature.We need to
stipulate in addition a list of
things that can value [Infl]
features.

Y[uF:] the uF feature
of Y is valued and
checked:Y[uF:val].

Generalizing Agree

Agree requires:

An uninterpretable or

unvalued feature Our first version of
A matching feature Fhecking (sisterhood)

.) is a special case of this
Line of S'gh; more general
(c-command) conception of Agree.

And results in: Except that we do want the
. [uD] feature of P to be
Valuing of unvalued checked by directly Merging P
features. and an DP—not “at a distance”
like agreement.

Checking of the
uninterpretable
features.

Strong features

In order to check the [uD] feature of P only through
Merge (sisterhood), we will define a special kind of
uninterpretable feature: the strong feature.

A strong feature can only be checked when the
matching feature is on an element that shares the
same mother node.

We will write strong features with a *:
P [P uD¥]

C-selection features are strong.

Generalizing Agree

Matching:
Identical features match. [D] matches [uD].

Some features match several things. [ulnfl:] can match
values of the [tense] feature ([tense:pres], [tense:past]),
as well as the category features [Perf], [Prog], [M].

What if there are two options? We'll see later that only
the closest one participates in Agree.

Valuing/Checking:
An unvalued feature is always uninterpretable.
Valuing a feature will check it.

A privative feature is simply checked when it matches.

Other properties of Agree
(mainly relevant later)

Strong features Agree first.

Where a single head has more than one feature that must Agree,
the strong ones go first.

The systewm is lazy.

Agree always goes with the closest option it can find in order to
check an uninterpretable feature.

If Agree locates a matching feature on X for one uninterpretable
feature, and X has a different feature that also matches, both
features will be checked.

Examples are coming up later, but for cross-referencing: these
properties are important for subject agreement.

Aqgree

X has feature [F1],Y has feature [F2]
X c-commandsY orY c-commands X
[F1] and/or [F2] are/is uninterpretable.
[FI] matches [F2]
X andY are close enough, meaning:
There is no closer matching feature between X and Y.

If [FI] or [F2] is strong, X and Y share the same mother node

Then:

Any unvalued feature ([F1] or [F2]) is valued.

The uninterpretable feature(s) is/are checked.

Comments on Agree

This statement of Agree allows for several different
configurations:

[uF]...[F] [F]...[uF] [uF]....[uF]

c-selection Inflection Case
Strong features must be checked very locally.

Merge can provide this locality.

Move can also provide this locality.

Strong features are what motivates

N v VP

N T

\% v <V> DP

WhenV moves to v, they combine in a way that we have been
writing just as V+v. Let’s be more precise.

In fact, we assume thatV head-adjoins (adjoins, head-to-head)
to v.This is the same sort of structure that Adjoin creates
between maximal projections.

The v head is replaced by the v head withV adjoined.

movement. Adjunction does not change projection levels—v is still a minimal
projection, still the head of vP. But it is a complex head (itsav
with aV adjoined to it).
U/ ’UI
Vay=? " vp Vay=? " VP
\% v <V> DP \% v <V> DP
eat [uV*, ...]

What happens to the VP from which theV moved?

It is still a VP, it must still have a head.The features of the VP are the
features of the head (recall for example, that checking the
uninterpretable feature on the head is the same as checking the
uninterpretable feature on the projection of the head). The VP is still a
VP, its head is still a verb (with category feature [V]), and presumably all
the rest of the features as well.

We notate the original location of theV by writing <V> (standing for
the “trace” left behind by the original V). But since <V> must still be a
bundle of features, the same one that was there before movement, <V>
is really just another copy (or, well, the original) of the verb.

Moral: “Head-movement” can be viewed as Copy+Adjoin.

Make a copy of V. Replace the original v is replaced by the syntactic
object formed by Adjoining the copy ofV to v.

If v has a [uV*] feature, this putsV close enough to v to check that
feature. This is why we move V.

Note: This appears to make a change inside the object. Merge always
happens at the root. However:Think about the root. It has the
features of v, its head. It is a projection of v.There is a sense in which
this is still affecting only the root node, it’s adjunction to its head.

- /\
Vay=? v VP
N N
\% v <V> DP
rsnuy
We always moveV to v.
Reason:

v always has a [uV*] feature.

But why wasn’t this checked when we Merged v and VP? (Like the
[uD*] feature of P is checked when we Merge P and DP...)

The Hierarchy of Projections says that v >VP:When you finish VP,
you Merge it with v. Only then do you Move and Merge with other
things. The HoP takes priority.

When you Merge two nodes in order to satisfy the HoP, you don’t
get to Agree.You have to move to the next step (Merge or Move).

- /\
Vay=? v VP
/\ /\
\% v <V> DP

fiaw

That's craziness, isn't it? Now instead of one V, we have two identical copies. Why
don't we get Pat Pat ate ate lunch?

We need both copies (the higher one to check the feature, the lower one to head
the original projection of V). But on the other hand, the verb was picked from the
lexicon just once.

A-P interface: Only the highest copy is pronounced.

Spelling out the idea that you “move it but leave a trace.” Highest copy = the one
that is not c-commanded by another copy.A headV adjoined to another head v c-
commands the same nodes that v did.This is a stipulation, but if we define c-
command in a more complicated way, it comes to this.A general property of
adjuncts is that they are “just as high” in the tree as the thing they adjoined to, so
they “see” (c-command) the same stuff as the thing they adjoined to.

A note on node labeling

A node is labeled as a maximal projection (XP) if
there are no more strong features left to check.

Notice that v has [ulnfl:] even when we're
finished with it and Merge it with the next
head up (M, Perf, Prog, Neg, or T). But we still
want there to be a vP.

C-selection features (like the [uD*] feature(s)
of V, or the [uD*] feature of P) are always
strong.

T has Lup*]
(“EPP”)

V moves to v:
As for why you
v has a [uV*] feature (always). don't satisfy the
[uV*] feature of

i i - | vthe same way,
Moving the subject from SpecvP to SpecTP: e

T has a [uD*] feature (always). i“°°|dsPe°VP' the
could speculate,

Moving the subject (making a copy and but there’s no

.S . articularl
Merging it with T) put the D feature of the sPatisfying 4
subject close enough to T for the [uD*] answer.We'll
feature to be checked. set that aside.

Only avxiliaries move to T

| do not eat green eggs and ham.
| have not eaten green eggs and ham.
| have not been eating green eggs and ham.

| would not have been eating green eggs and ham.

There is a set of things that move to T—the
auxiliaries (have, be, modals). Main verbs do not
move to T. Only the top auxiliary moves to T.

Movement is driven by strong features.

Auxiliaries moving fo T

Since auxiliaries and main verbs behave differently,
they must be differentiated. Suppose auxiliaries have
the feature [Aux] (“the property of being
auxiliaries”).

Auxiliaries move. Movement is driven by a strong
feature. But what strong feature?

[uAux*] on T?
No.That does not work.

[uT*] on Aux?

No.That would not be promising.

Auxiliaries moving fo T

Auxiliaries have a [ulnfl] It appears that we need to
feature, valued by the next say this:

thi X
ng Up If a head has the feature

The topmost auxiliary has its [Aux], and
[ulnfl:] feature valued by T.
If that head’s [ulnfl:]

The topmost auxiliary is the feature is valued by T,

only auxiliary that moves to
4 Y Then the feature is

valued as strong.
An auxiliary whose [ulnfl:]
feature is valued by T will
move to T.

The auxiliary must move
to T to be checked.

T[tense:pres] ... be[Aux, ulnfl:]
T[tense:pres] ... be[Aux, ulnfl:pres*]
T[tense:pres]+be[Aux, ulnfl:pres*] ... <be>

Movement is driven by
strong features.

French vs. English

In English, adverbs cannot come between the verb and
the object.

*Pat eats often apples.
Pat often eats apples.
In French it’s the other way around.

Jean mange souvent des pommes.
Jean eats often of.the apples
‘lean often eats apples.

*Jean souvent mange des pommes.

If we suppose that the basic structures are the same, why
might that be?

French vs. English

Similarly, while only auxiliaries in English show up
before negation (not)...

John does not love Mary.
John has not eaten apples.

...all verbs seem to show up before negation (pas)
in French:

Jean (n’)aime pas Marie.
Jean (ne) loves not Marie
‘Jean doesn’t love Marie.

Jean (n’)a pas mangé des pommes.
Jean (ne)has not eaten of.the apples
‘Jean didn’t eat apples’

V raises to T in French

What it looks like is that
bothV and auxiliaries
raise to T in French.

This is a parametric Tvalues | T values
g'fllf,e;engeF betv;l]een [ulnfl:] on | [uInfl:] on
nglish and French. Aux v

A kid's taskis to English | Stong | Weak

determine whetherV
moves to T and whether French Strong Strong

auxiliaries move to T.

Swedish

Looking at Swedish, we can see that not only do languages
vary on whether they raise main verbs to T, languages also
vary on whether they raise auxiliaries to T:

...om hon inte kopte boken
whether she not bought book-the
‘...whether she didn’t buy the book’

...om hon inte har kopt boken
whether she not has bought book-the
‘...whether she hasn’t bought the book’

So both parameters can vary.

Typology of verb/aux raising

Interestingly, there don’t
seem to be languages that
raise main verbs but not

auxiliaries.
This double-binary T values T values
sviztlil'l‘;ﬂ‘;" predicts there [uInfl:] on | [uInfl:] on
' Aux v
It overgenerates a smidge. -
English Strong Weak
This is a pattern that we
would like to explain French Strong Strong
someday, another mystery -
about Aux to file away. Swedish Weak Weak
Sorry, we won't have any Unattested Weak Strong

satisfying explanation for
this gap this semester.

